INDEX

S.No Contents Page. no
1 Lab Objective 2
2 Introduction About Lab 3
3 Guidelines to Students 4
4 8

List of Lab Exercises
4.1 Syllabus Programs (JNTU)
4.2 Additional Programs

5 Description about OOP’S Concepts 9

6 Solutions for Additional Programs 13
7 Solutions for Syllabus Programs 34
8 Viva Questions 202
9 References 234

LAB OBJECTIVE

Upon successful completion of this Lab the studahtbe able to:

1.

2.

You will be able to know about Object oriented pogming.

Use Abstract Data Types in the programs.

Application of Non recursive functions.

OOP principles like Encapsulation Inheritance Paypohism were frequently used.
Trees —B and AVL Trees and their operations weegl us

Different sorting techniques (Quick sort, Mergetsbieap sort)were used.

Hashing Techniques are implemented.

INTRODUCTION ABOUT LAB

There are 66 systems (Compaq Presario) installéag Lab. Their configurations-are as
follows :

Processor : AMD Athelon ™ 1.67 GH
RAM : 256 MB

Hard Disk : 40 GB

Mouse : Optical Mouse

Network Interface card : Present

Software

> All systems are configured DUAL BOOT mode.i.e, Students can boot from Windows
XP or Linux as per their lab requirement.

This is very useful for students because theyamreliar with different Operating Systems so
that they can execute their programs in differeagpamming environments.

> Each student has a separate login for'databasssacce

Oracle 9i clientversion is installed in all systems. On the seraecount for each student has
been created.

This is very useful because students can savewlogk (scenarios’, pl/sql programs,
data related projects ,etc) in their own accouséeh student work is safe and secure from other
students.
> Latest Technologies likPOT NET andJ2EE are installed in some systems. Before
submitting their final project, they can start dpimini project from 2 year onwards.

> MASM (Macro Assembler) is installed in all the systems

Students can execute their assembly language pnsgraing MASM. MASM is very useful
students because when they execute their progfaysan see contents of ProcedRegisters
and howeach'instructionis being executed in tH@PU.

> Rational Rose Software is installed in some system

Using this software, students can depict UML diaggaf their projects.

> Software’s installed : C, C++, JDK1.5, MASM, OFFIG®, J2EE and DOT NET,
Rational Rose.

> Systems are provided for students in the 1:1 ratio.
> Systems are assigned numbers and same system istédld for students when they
do the lab.

Guidelines to Students

0

Equipment in the lab for the use of student comigurstudents need to maintain a
proper decorum in the computer lab. Students msestthe equipment with care. Any
damage is caused is punishable.

Students are required to carry their observatgmograms book with completed exercises
while entering the lab.

Students are supposed to occupy the machinesedlltii them and are not supposed to
talk or make noise in the lab. The allocation isyguon the lab notice board.

Lab can be used in free time / lunch hours bystihdents who need to use the systems
should take prior permission from the dab in-charge

Lab records need to be submitted on or beforeafatabmission.
Students are not supposed to use floppy disks

Use of computer network is encouraged.

Algorithm,Flowchart,Programe development

What is algorithm:
An Algorithm is a deterministic procedure that, wHellowed, yields a definite solution:to a
problem.

An Algorithm is a design or plan of obtaining atgan to the problem. it is logically process of
analyzing a mathematical problem and data stepdpyso as to make it easier to understand and
implement solution to the problem .it is composéd bnite set of steps, each of which may
require one or more operation. it may have zenmare inputs and produces one or major
outputs. it should terminate after a finate nundfesperation.

Important features of an algorithm:

Finiteness:

An algorithm terminates after a fixed number opste

Definiteness:

Each step of the algorithm is precisely defined.

Effectiveness:

All the operations used in the algorithm can bdgrared exactly in a fixed duration of time.
Input:

An algorithm.has certain precise inputs beforeetkecution of the algorithm begins.
Output:

An algorithm has one or more outputs.

Flowchart:

Flowchart is a graphical representation of an atligor. it makes use of the basic operations in
programming. All symbols are connected among thérasdo indicate the flow of information

and processing.

A Flowchart is a diagrametic representation ofwagous steps involved in the solution of a

problem.

Flowchart is a symbolic diagram of operation segeaiata flow,control flow and processing
logic in information processing.The symbols usezlsample and easy to learn.

Symbols used with flowcharts:

Name

Terminal

Input/Output

Process

Decision Making

Connector

Flow direction

Symbol

/

/

Purpose

Beginning/End of the flowchart

Input/Output data

Mathematical calculations, data
transfer and logic operations

Alternate paths

Transfer to another point in the
flowchart

Path of a logic flow in a program

How to run C++ programs

Step 1:
#include<iostream.h>
class example

{
public:
void ex()
{
cout<<"This is example program";
}
3
void main()
{ »
example e; -
e.ex();
}

Step 2: Submit the file to CC.(the C Compiler)(CTRL+F9)

If the program has no errors, the compiled the atitpas follows

Output:

This is example program

List of Lab Exercises

SyllabusPrograms (JNTU)
S.No Programs

1

2

3

o O1

10

11

Write a C++ program to implement the followingngsan array

a) Stack ADT b) Queue ADT

Write a C++ program to implement the followingngsa singly linked list

a. Stack ADT b. Queue ADT.

Write C++ Program to implement the deque (doeblged queue) ADT using a
doubly linked list.

Write a C++ program to perform thefollowing ogtgons:

a) Insert an element into a binary search tree.

b) Delete an element from a binary search tree.

C) Search for a key element in a binary search tree.

Write a C++ program to implement circular queUgTAusing an array.

Write a C++ program that use non —recursive fonetto traverse the given
binary tree in

a) Preorder b)inorder and c)post order

Write C++ programs for the implementation of bhd dfs for a given graph
Write C++ programs forimplementing the followisgrting methods:

a) Quick sort ' b) Merge Sort c¢) Heap Sort.

Write a C++ program to perform the following ogtgons.

a) insertion into a B-tree b) Deletion from arBe

Write.a C++ program to perform the following ogéns.

a) insertion into a AVL-tree b) Deletion fromA¥/L-tree

Wirite a C++ program to implement Kruskal’s aljon to generate a minimum
spanning tree

Additional Programs

1. Write a program with constructor function andther for destruction function.

2. Write a program to explain function overloadimigh different number of arguments.

3. Write a program to explain function overloadingiwiype, order, and sequence of arguments.
4. Write a program on overloading operator++

5. Write a program for overloading operator++ and apmr—using friend functions.

6.Write a program to explain Single inheritance

7.Write a program to explain multiple inheritance

8. Write a program to explain virtual functions.

OOP Concepts:

The object oriented paradigm is built on the fouiwtalaid by the structured
programming concepts. The fundamental change in @@t a program is designed around
the data being operated upon rather upon the opesaghemselves. Data and its functions are
encapsulated into a single entity.OOP facilitatesiting reusable code that can eventually save a
lot of work. A feature called polymorphism perntibscreate multiple definitions for operators
and functions. Another feature called inheritaneepts to derive new classes from old ones.
OOP introduces many new ideas and involves a éiftegipproach to programming than the
procedural programming.

Benefits of object oriented programming:

. Data security is enforced.

. Inheritance saves time.

. User defined data types can be easily constructed.

. Inheritance emphasizes inventions of new data types

. Large complexity in the software development creasily managed.

Basic C++ Knowledge

C++ began its life in Bell Labs, where Bjarne Sstwup developed the language in the early
1980s. C++ is a.powerful and flexible programmiagduage. Thus, with minor exceptions, C++
is a superset.of the C Programming language.

The principal enhancement being the object —orteotecept of @lass.

A Class is'a user defined type that encapsulatey mgortant mechanisms. Classes enable
programmers to break an application up into smadinageable pieces, objects.

Basic concepts of Object-oriented programming:

Object:
Objects are the basic run time entities in an digeented system.

They may represent a person, a plabank account, a table of data or any item that the
program has to handle.

class:

The entire set of data and code of an object candme of a user defined data type with
the help of a class in fact Objects are variabfah@type class. Once a class has been defined ,
we can create any number of objects belongingabdiass. A class is thus a collection of
objects of similar type.
For example: mango, apple, and orange are memb#hs olass fruit.

ex:
fruit mango;
will create an object mango beloggio the class fruit.

Data Abstraction and Encapsulation:

the wrapping up of data and functions in to alginmit is known as encapsulation.Data
encapsulation is the most striking feature of asld@he data is not accessable to the outside
world and only those functions which are wrappethaclass can access. This insulation of the
data from direct access by the program is calléd kiiding.

Abstraction :

Abstraction refers to the act of represgnéssential features without including the
background details or explanations. since the etagse the concept of data abstraction ,thy are
known as abstraction data type(ADT).

Inheritance :

Interitance is the process by which object®n€ class acquire the properities of objects of
another class.
for example:
The bird 'robin ' is a part of the class ‘flyingddiwhich is again a part of the class 'bird'.
The concept of inheritance provide the idea of abiliy.

POLYMORPHISM:

ploymorphism is another important oop concBpiymorphism means the ability to take
more than one form.an operation may exhibit difierastances. The process of making an
operator to exhibit different behaviours in diffeténstance is known as operator overloading.

Input/output Statements:

Cout<<’example”;
Cin>>n;

Class definition:

class definition has two components: the class hbadclass body.
Class vector //the class head

{

/I all class members

|5

10

Solutions for Additional Programs

Program 1:

Do an example program with constructor function

Constructors:

It is convenient if an object can initialize itselhen/it.is first created, without need to
make a separate call to its member functions. Goviges a non static member function called
as constructor that is automatically called whejedtis created. After objects are created, their
members can be initialized by using constructors.

Important points to be noted while using constructos

. Constructor name must be the same as that ofi$s clame in which it belongs.
. Constructors are invoked automatically'when objaotscreated.

. Constructors cannot specify return types nor retatoes.

. Constructors cannot be declared static or const.

. Constructors should have public'access within thgsc

Destructors:

A destructor is a member function that is calletbeatically when an object is destroyed.
~class name ();
Where the class name is the name of the destrantbis preceded by a tilde (~) symbol.

1.Do an example program with constructor function.Ad Example program for
destruction:

Algorithm:

stepl:create a maths class

step2:declared within a maths class private inbl@tconstructor and a showdata function
step3:initialize a variable ‘a’ to 100 within thertstructor

step4:display ‘a’ value with the help of showdatadtion

step4:within the main function create a instancthefmaths class to ‘m’

step5:call a method of showdata function using ‘m’

11

Program:

include<iostream.h>

class maths
{
int a;
public:
maths();
void showdata();
%
maths :: maths()
{
cout<<”"\n this is a constructor”;
a=100;
}
void maths :: showdata()
{
cout<<”\n the value of a="<<a,;
}
void main ()
{
maths m;
m.showdata();
}
Output:

This is a constructor
The value of a=100

12

Programl1:

Example program for destruction:

Algorithm:

stepl:initialize n=0

step2: create a call class

step3: declared constructor and a destructor fometithin a call class
step4.display ++n value using constructor

step5: display --n value using destructor

step6: within the main function create two instanggthe call class ‘c1’ and 'c2’

Program:

#include<iostream.h>

int n=0;
class call
{ |
public:
call ()
{
cout<<™\n constructor’<<++n;
}
~call ()
{
cout<<™\n destructor’< --no;
}
h
main ()
{
call c1, c2;
}

13

OUTPUT:

constructor 1
constructor 2
destructor 1
destructor 0

Program :2

Write a program to explain function overloadingwaifferent number of arguments

Function Overloading:
C++ enables two or more functions with same nanevih different types of arguments or
with different number of arguments .This capabif@gyoverload a function is called function

overloading

Write a program to explain function-overloading with different number of arguments.

Algorithm:
stepl:create two functions with the same name am glata type but different number of
arguments
step2: within the main function initialize integalues x=5,y=10,z=20,a=0,b=0
step3:a)s=call sum(x,y)

print’s’

b) s=call sum(x,y,z)

prin t's’
step4:a)with in'the called function of sum(x,y)

return x+y

b)with in the called function of sum(x,y,z)

return x+y+z

Program:2

#include<iostream.h>
#include<conio.h>
int sum(int, int);
int sum(int, int, int)
void main()
{

int x=5,y=10,z=20,a=0,b=0;

14

clrscr();

a=sum(x,y);

b=sum(x,y,z);

cout<<” sum of two integers=<<a<<endl|;
cout<<’sum of three integers="<<b<<endl;

getch();
}
int sum(int x,int y)
return(x+y);
}
int sum(int x,int y,int z)
{
return(x+y+z);
Output:

sum of two intezers=15
sum of three integers=35

15

Program 3:

Write a program to explain function overloadinghwiype, order, and sequence of
arguments.

Algorithm:
stepl:create more functions with the same nameldiedent data types and different number of
arguments
step2: within the main function initialize differetiata type varibles
step3:a)sum=call all functions

print ‘sum’
step4:a)write all called functions return ‘sum afues

Program:

#include<iostream.h>

#include<conio.h>

int sum(int,int);

int sum(int,int,int);

float sum(float,int,float);

double sum(double,float);

double sum(int,float,double);

long double sum(long double,double);

void main()

{
int a=sum(4,6);
int b=sum(2,4,6);
float c=sum(3.5f,7,5.6f);
double d=sum(7,8,1.2f);
double e=sum(1,2.2f,8.6);
long double f=sum(100,80);
clrscr();
cout<<’sum(int,int) ="<<a<<endl,
cout<<” sum(int,int,int) ="<<b<<end];
cout<<’sum(float,int,float) ="<<c<<endl;
cout<<” sum(double,float) ="<<d<<endl;
cout<<” sum(int,float,double) ="<<e<<endI;\
cout<<”sum(long double,double) = “<<f;

getch();

}

int sum(int x,int y)
{
return(x+y);

int sum(int x,int y,int z)

{

return(x+y+z);

}
16

float sum(float x,int y,float z)

{

return(x+y+z);

double sum(double x,float y)

{

return(x+y);

}

double sum(int x,float y,double z)

{

return(x+y);

}

long double sum(long double x,double y)

{

return(x+y);

Output:

sum(int,int) =10

sum(int,int,int) =12
sum(float,int,float) =16.1
sum(double,float) =9
sum(int,float,double) =11.8
sum(long,double,double) =180

17

Program 4:
Write a program on overloading operartor++

Operator Overloading:

We know that operator is a symbol that perfororae operations on one or more
operands. The ability to overload operators isaiitbée C++’'s most powerful features++ allows
us to provide new definitions to some built — iregiors. We can give several meaning to an
operator, depending upon the types of arguments d$es capability to overload an/operator is
called operator overloading.

Operators are overloaded by creating operatartimms.an operator function
consists of a function definition, similar to a mad function except that the function name now
becomes the keyword OPERATOR followed by the synhleahg overloaded. The general form
or syntax of an operator function is
Return type class name:: operator <operator synfagement list)

{
//Body of the function

}

Where return type is the data type of the valuarnetifter the specific operation, operator
symbol is the operator being overloaded, thates@ided by the keyword operator, and Operator
function is usually a member function or a frienddtion.

An operator that deals with only one operand ikedas an unary operator. Some of the
commonly used unary operators are ++,--,I,~-andyumanus.
Overloading increment and decrement operatorsifidrement operator (++) and the decrement
operator (_) are unary operators since thepmaonly one operand. Both the increment and
decrement operators have two forms. They are frefido the operation and then use the
content of the variable.) and postfix (i.e usedbstent of the variable and then do the
operation)notation. The general syntax form orsyr@ax of the prefix and postfix operator
functions are
[Iprefix increment
return type operator++()

/I Body of the prefix operator
}

/Ipostfix increment
Returnoperator++(int x)

{
//Ibody of the postfix operator

}

18

4)a)Write a program on overloading operartor++
Algorithm:

#include<iostream.h>
#include<conio.h>

class pen
{
private:
int count;
public:
pen()
{
count=0;
}
pen(int p)
{
count=p;
}
void showcount()
{
cout<<” the value of count is “<<count;
}
pen operator++()
return pen(++count);
}
pen operator++(int)
{
return pen(++count);
}
3
void main()
{
pen pl,p2;
clrser(),
cout<<™\n for object p1.”;
++pl;
pl.showcount();
pl++;
pl++;

pl.showcount();
cout<<™\n for object p2.”;
++p2;
++p2;
p2.showcount();
19

p2++;
p2.showcount();
getch();

}

Output:

for object p1:
the value of count is 1
the value of count is 3
for object p2:
the value of count is 2
the value of count is 3

20

Program: 5
Write a program for overloading operator++ and opefator— using friend functions.

#include<iostream.h>
#include<conio.h>
class book
{ .
private:
int x,y;
public:
book(int a,int b)
{
X=a,;
y=D;

void showdata()
{
cout<<” \n value of x :"<<x<<endl;
cout<<™\n value of y:"<<y<<endl|,
}
friend book operator ++(book &abc);
friend book operator --(book &abc);

|8

book operator ++(book &abc)
{

abc.x++;

abc.y++;

return abc;

}
book operator —(book &abc)

{

abc.x--;
abc.y--;
return abc;

}

void main()

{

book b1(5,25);
clrscr();
bl.showdata();
++b1;
bl.showdata();
--b1;
bl.showdata();
getch();

}

21

Output:

the value of x:5
the value of y:25
the value of x:6
the value of y:26
the value of x:5
the value of y:25

22

Inheritance:

A class have specified data type and if you needheer data type similar to the previous one
with some additional features,instead of creatimga data type,C++ allows to inherit the
members of the existing type and can add some feateres to the new class. This property is
refered to as inheritance.The old class is caltebase class and new class is called as derived
class or child class.

The general form or the syntax of specifying adticlass is :

Class derivedclassname :acessspecifies baseatassn

{

/Ibody of the derived class

}

The colon indicates that,the derived class natleedtedclassname is derived.from the base
class named baseclassname.The access speciferlizdh class must be either private,protected
or public.if no accessspecifier is present is agsliprivate by default. The body of the ferived
class contains member data and member functions afvn.

Single inheritance: A derived class with only omesé class is called as single Inheritance.The
derived class can access all the members of theedb@ss and can add members of its own.

23

Program :6
Write a program to explain Single inheritance.

Algorithm:

stepl:Take two classess teacher and student

step2:withina teacher class Enter name and nunabees with the help of getdata() function and
display this data using putdata() function.

step3:within the student class Enter and displagkenal,m2,m3 with the help of
getdata(),putdata() functions.

step4:within the student class extends teaches allag using data and their functions to the
student class

Program:

#include<iostream.h>
class teacher
{ .
private:
char name[25];
long number;
public:
void getdata()
{
cout<<™\n \t Enter your name:”;
cin>>name,;
cout<<™\n \t Enter your number;”;
cin>>number;

}
void putdata()

{
cout<<™\n \t name:"<<name;
cout<<™\nAt number : "<<number;

}
|8
class student : public teacher
{
private:
int m1,m2,m3;
public:
void getdata()
{
teacher :: getdata();
cout<<™\n \t Enter marks in three subjects:”;
cin>>m1>>m2>>m3;
}
void putdata()
{
24

teacher :: putdata();

cout<<™\n \t Marks of three subjects:"<<ml<<m2<<m3;

}

3

void main()

{
student s1,s2;
cout<<”\n Enter data for student 1:\n":
sl.getdata();
cout<<”\n Enter data for student2 :\n”;l|
s2.getdata();
cout<<™\n the data of student 1:”;
sl.putdata();
cout<<™\n the data of student 2:”;
s2.putdata();

}

Output:

Enter data for studentl

Enter your name:James

Enter your number:1

Enter 3 subject mark:75 65 85
Enter data for student 2

Enter your name :Susila

Enter your number:2

Enter marks in 3 subjects:65 85 75

The data for student 1

Name:James

Number:1

Marks of three subjects: 75 65 85
The data for student 2

Name :Susila

Number :2

Marks of three subjects:65 85 75

25

Multiple Inheritance : Very often situations may arise in which a claas to derive features
from more than one class. Multiple inheritancelfeates a class to inherit features from more
than one class. The derived class can access tmorer classes and can add properties of its
own.

Program :7

Write a program to explain multiple inheritances

Algorithm:

stepl:Take three classess student,employee,manager

step2:withina student class Enter name and scboliége data with the help of getdata()
function and display this data using putdata() fiomc

step3:within the employee class Enter and disptelypany, age data with the help of
getdata(),putdata() functions.

step4:within the manager class extends studen¢émapiioyee classess and using data and their
functions to the manager class and Enter & disgisggnation ,salary of the manager using
putdata(),getdata() functions

step5:within the main function create instance ahager class ‘m’ and call getdata() and
putdata() functions.

Program:

#include<iostream.h>
#include<conio.h>
Const int MAX=50;
Class student
{
Private:
Char name[MAX];
Char school[MAX];
Char college[MAX];
Public:
Void getdata()
{
Cout<<™\n'\t Enter name :”;
Cin>>name;
Cout<<™t Enter school name:”;
Cin>school;
Cout<<"\n \t Enter College name:”;
Cin>>college;
}
Void putdata()
{
Cout<<™\n \t Name :"<<name;
Cout<<"\n \t School Name :"<<school;
Cout<<"\n \t College Name :"<<college;

}
2
Class employee
26

|8

Private
Char company[MAX];

Int age;

Public :

Void getdata()

{

Cout<<\n \t Enter the company name :”;
Cin>>company;

Cout<<"\n \t Enter age:”;

Cin>>age;

}

Void putdata()

{

Cout<<"\n \t Company Name :"<<company;
Cout<<’\t Age:"<<age;

}

Class manager : private employee,private student

{

|5

Private:

Char design[MAX];

Float salary;

Public :

Void getdata()

{

Student ::getdata();
Employee :.getdata();
Cout<<\n \t Enter your'Designation :”;
Cin>>design;

Cout<<"\n \t Enter salary:”;
Cin>>salary;

}

Void putdata()

{

Student ::putdata();
Employee::putdata();

Cout<<"\n \t Designation :"<<design;
Cout<<"\n \t Salary :“<<salary;

}

Void main(0

{

Manager m;

Clrscr();

Cout<<"\n Enter data for manager:’<<endl;
m.gatdata();

cout<<”\n The data for manager is :"<<endl;
m.putdata();

27

Output:

Enter data for manager :
Enter name : Ram
Enter name of school: GMSS
Enter name of college :GCET
Enter name of company :CMC
Enter age :24
Enter designation :Analyst
Enter salary :10000

The data for manager is
Student Name :Ram
School Name :GMSS
College Name :GCET
Company Name :CMC
Age 24
Designation :Analyst
Salary:10000

28

Program :8

Virtual Functions:

Virtual means existing in effect but not in reali#yvirtual function is one that does not
really exist but nevertheless appears real to quarts of program. Virtual functions provide a
way for a program to decide, when it is runningawtunction to call. Virtual function allows
greater flexibility in performing the same kindsaddtion, on different kind of objects.

While using virtual functions:

e It should be a member function of a class.

» Static member functions cannot be virtual functions

» Avirtual function should be declared in the balss€ specifications.
» Avirtual function may or may not have function lyod

» Virtual functions can be overloaded.

» Constructors cannot be declared as virtual funstion

* There can be virtual destructors.

8)Write a program to explain virtual functions.

#include<iostream.h>
Class baseclass

{
Public:
Void putdata()
{
Cout<<"\n this is base class:”;
}
3

Class derivedclass : public baseclass

{
Public:

Void putdata()

Cout<<"\n This is\derived class:”;

}
2
Class derivedclass? : public baseclass

{

Public :
Void putdata()
{
Cout<<™\n This is derived class2:”;
}
3
Void main()
{

Derivedclass d1;
Derivedclass2 d2;
Baseclass *ptr;
Ptr->putdata();

29

Ptr=&dc2;
Ptr->putdata();

Output:

This is a base class
This is a base class

30

SOLUTIONS FOR PROGRAMS (AS PER JNTU SYLLABUS)

STACKS:
A stack is an ordered collection of data items wmtoch new items may be inserted and from
which data items may be deleted at one end. Staclso called Last-In-First-out(LIFO) lists.

Representation of a stack:

—» TOF

RPNNWAOOIO
>mOomm

Basic terminology associated with stacks:

Stack Pointer(TOP):Keeps track of the current pmsithe stack.

Overflow:Occurs when we try to insert(push) morfeimation on a stack than it can hold.
Underflow:Occurs when we try to delete(pop).an iteifma stack,which is empty.

Basic Operation Associated with Stacks

1) Insert (Push) an into the stack.
2) Delete (Pop) an item from the stack.

1) a)Algorithm For Inserting an<tem into the Stacks:
Procudure PUSH(S,SIZE, TOP,ITEM)
S Array
SIZE Stack size
TOP Stack Pointer
ITEM value in a cell
Stepl:{Check for stack overflow}
If TOP>=SIZE then
Printf(‘Stack overflow’)
Return
Step2:{Increment pointer top}
TOP=TOP+1
Step 3:{Insert ITEM at top of the Stack}
S[TOP]=ITEM
Return

31

1) a) Algorithm For Deleting an Item into the Stack
function POP(S, TOP)
S Array
TOP Stack Pointer
Stepl:{Check for stack underflow}
If TOP=0 then
Printf(‘Stack underflow’)
Return
Step2:{Return former top element of stack}
ITEM=(S[TOP]);
3:{Decrement pointer TOP}
TOP=TOP-1
Return

1) a)Algorithm For display Items into a Stack S
function POP(S, TOP)
S Array
TOP Stack Pointer
Stepl:{Check for stack underflow}
If TOP=0 then
Printf(‘stack is empty’)
Return
Step2:{display stack elements until TOP value}
Print(S[TOP])
TOP=TOP+1

1) a)Algorithm For display top item from the StackS
function POP(S,TOP)
S Array
TOP Stack Pointer
Stepl:{Check for stack underflow}
If TOP=0 then
Printf(‘stack is.empty’)
Return
Step2:{display TOP value into the Stack}
Print(S[TOP])

32

1)a)Flowchart For Inserting an Item into the Stacks:

S Array

SIZE Stack size
TOP Stack Pointer
ITEM value in a cell

yes
Print ‘Stack overflow’

no

TOP=TOP+1

A 4

S[TOP]=ITEM

33

1) a) Flowchart For Deleting an Item into the Stack
function POP(S, TOP)

S Array

TOP Stack Pointer

Print ‘Stack underflow’

no
ITEM=S[TOP]

\ 4

TOP=TOP+1

34

1) a)Flowchart For display top item from the StackS
function POP(S,TOP)

S Array

TOP Stack Pointer

es
Print ‘Stack is empt

yeg

Print(S[i])

A

1) a)Flowchart For display top item from the StackS
function POP(S,TOP)

S Array

TOP Stack Pointer

es
Print ‘Stack is empty’

no
Printf(S[TOPY])

36

Program 1)a):stack ADT using arrays.

#define size 10
#include<iostream.h>
#include<conio.h>
template<class t>
class stack
{
private:
t s[size];
int top;
public:
void init();
isfull();
isempty();
void first();
operation();
void push(t x);
t pop();
void display();
3
template<class t>

void stack<t>::init()

37

top=-1,
}

template<class t>

void stack<t>::push(t x)
{
if(top==size-1)
cout<<"\n stack is full, insertion is not possihle
else
{
top++;
s[top]=x;
cout<<"\n insertion";
}
}

template<class t>
t stack<t>::pop()
{
tx;
if(top==-1)
return(-1);
else
{
x=s[top];
38

top--;
return(x);

}

template<class t>

void stack<t>::display()

{
int i;
if(top==-1)
cout<<"\nstack is empty";
else
{
cout<<"\nstack contains as follows\n";
for(i=top;i>=0;i--)
cout<<sl[i]<<" "
}

}

template<class t>

void stack<t>::first()

{
int i;
if(top==-1)
cout<<"\nstack is empty";

39

else
{
cout<<"\ntop of the stack element is";

cout<<sjtop];

}

void menul()

{
cout<<"\n\t l.integer stack";
cout<<"\n\t 2.float stack";
cout<<"\n\t 3.char stack";
cout<<"\n\t 4.exit";

}

void menu2()

{
cout<<"\n \t 1.insertion";
cout<<™\n \t 2.deletion™;
cout<<"\n \t 3.display stack contents";
cout<<"\n \t 4.top of the stack element is";
cout<<"\n \t 5.exit";

}

template<class t>

void operation(stack<t>a)

{
40

a.init();

int ch;

menu2();

cout<<"\nEnter your choice:",
cin>>ch;

while(ch<5)

{

switch(ch)
{
int x;
case 1:
{
cout<<"\nEnter the element to be inserted:";
cin>>Xx;
a.push(x);
break;
¥
case 2:
{
x=a.pop();
if(x==-1)
cout<<"\nstack is empty,deletion is not possiple"

else

cout<<"deleted element is"<<x<<"\n";

41

break;

case 3:

{
a.display();
break;

}

case 4:

afirst();
break;
}

}

menu2();

cout<<"\nEnter your-choice";

cin>>ch;
}
}

template<class t>

int stack<t>::isfull()

{
if(top==size-1)
return(l);
else

42

return(0);
}
template<class t>
int stack<t>::isempty()
{
if(top==-1)
return(l);
else

return(0);

}

main()

{
clrscr();
int ch;
menul();
cout<<"\nEnter your choice";
cin>>ch;
while(ch<4)
{
switch(ch)
{

case 1:

{

stack<int>a;

operation(a);
break;

}

case 2:

{
stack<float>a;
operation(a);
break;

}

case 3:

{

stack<char>a;
operation(a);
break;

}

}

menul();

cout<<"\nEnter your choice";

cin>>ch;
}
getch();

return(0);

44

45

Output:

l.integer stack
2 .float stack
3.char stack.
4.exit.
Enter yourchoice:1
l.insertion
2.deletion
3.display stack contents
4.display top most element
5.exit
Enter your choice:1
Enter the element to be inserted:10
element is inserted
l.insertion
2.deletion
3.display stack contents
4.display top most element
5.exit
Enter your choice:1
Enter the element to be inserted:20
element is inserted
l.insertion
2.deletion
3.display stack contents
4.display top most element
5.exit

Enter your choice:1
Enter the element to be inserted:30
element is inserted
l.insertion
2.deletion
3.display stack contents
4.display top most element
5.exit
Enter your choice:4
top-of the stack element is:30
l.insertion
2.deletion
3.display stack contents
4.display top most element
5.exit
Enter your choice:3
stack contains as follows:
3020 10
l.insertion
2.deletion

46

3.display stack contents
4.display top most element
5.exit

Enter your choice:2

deleted element is:30
l.insertion
2.deletion
3.display stack contents
4.display top most element
5.exit

Enter your choice:5
l.integer stack
2.float stack
3.char stack.
4.exit.

Enter your choice:4

47

QUEUE:

Queue is an ordered collection of data such tlet#ia is inserted at one end and deleted from
other end.It is a collection of items to be proeessn a First-In-First-Out(FIFO) or First Come

First Served(FCFS) basics.

Ascending order of memory
>

JPeletion A B C D E F G

Front T Rear

Basic Operation Associated on Queues:
1) Insert an item into the Queue.
2) Delete an item into the Queue.

1) b)Algorithm For Inserting an Item into a Queue Q:

Procudure INSERT(Q,SIZE,F,R,ITEM)
Q Array
SIZE Queue size
F front Pointer
R rear pointer
ITEM information to be inserted at the rear of geleu
Stepl:{Check for Queue overflow}
If R>=SIZE then
Printf('Queue overflow’)
Return
Step2:{Increment rear pointer}
R=R+1
Step 3:{Insert new element at rear end of queue}
Q[R]=ITEM
Step 4:{If initially,the queue is empty,adjust tinen pointer}
If F=0,then F=1

48

Insertion

1) b) Algorithm For deleting an Item from a Queue Q:

function DELETE(Q,F,R)

Q Array

F front Pointer

R rear pointer

ITEM information to be inserted at the rear of geleu

Stepl:{Check for Queue underflow}
If F=0 then
Printf(‘Queue underflow’)
Return
Step2:{Delete the queue element at front end ame gt into item}
ITEM=Q[F]
3:{If queue is empty after deletion,set front ardr pointers to 0}
If F=R then
F=0
R=0
{Otherwise increment front pointer}
Else
F=F+1
Return(ITEM)

1) b)Algorithm For display Items into the:Queue Q
function Dispaly(Q)

Q Array
Stepl: {Check queue values}
If F<O

Print(‘Queue is. empty’)
Step2:{display Queue values}
For I value Fto R

Print(Q[1])
=1+1

1) b)Algorithm For display Front Iltem into the Queue Q
function Dispaly(Q,F)

Q Array
Stepl: {Check queue values}
If F<O

Print(*Queue is empty’)
Step2:{display Front item of the Queue}
Print(Q[F])

49

1) b)Algorithm For display Rear Item into the QueueQ
function Dispaly(Q,R)

Q Array
Stepl: {Check queue values}
If R<O

Print(‘Queue is empty’)
Step2:{display Front item of the Queue}
Print(Q[R])

1) b)Flowchart For Inserting an Item into a Queue Q
Procudure INSERT(Q,SIZE,F,R,ITEM)

Q Array

SIZE Queue size

F front Pointer

R rear pointer

ITEM information to be inserted at the rear of geleu

es
Print ‘Queue overflow’

no

R=R+1

A 4

Q[R]=ITEM

1) b) Flowchart For deleting an Item from a Queue Q
function DELETE(Q,F,R)

Q Array

F front Pointer

R rear pointer

ITEM information to be inserted at the rear of geieu

es
Print ‘Queue Underflow

no
ITEM=QIF]

yeg

Print(S[i])

A

51

1) b)Algorithm For display Items into the Queue Q
function Dispaly(Q)
Q Array

* Print ‘Queue is empty’
no
[

yes
=F
Is na

y

A =<>

yes l
Printf(Q[i])

»
|

A

52

1) b)Algorithm For display Front Iltem into the Queue Q
function FRONT(Q,F)
Q Array

yes
Print ‘Queue is empty’

no
print' Q[F]

’

0

Stop

| S —

1) b)Algorithm For display Rear Item into the QueueQ
function REAR(Q,F)
Q Array

es
Print ‘Queue is empty’

no
int'Q[R

printQ[R] |,

Stop s

Program 1 :

(b) Queue ADT using Arrays.
#include<iostream.h>
#include<conio.h>
#define size 10
template<class T>
class queue
{

T q[size]; intf,r;
public:
intisfull(); T last();
void display();
void init();
int isempty();
void insert(T x);
T del();
5
template<class T>
void queue<T>::init()
{
f=0; r=0;

T first();

54

template<class T>
void queue<T>:insert(T x)

{

if(r>=size)

cout<<"\n insertion is not possible";
else{

r++;

alrl=x;
cout<<"\n element is inserted";
f=1;
}
}

template<class T>
T queue<T>::del()
{

T X;

if(f==0)

return(0);

else

if(f==r)

{

x=qf];

=0;

r=0;

55

return(x);

}

else

x=q[f];

f++;

return(x);

}
}

template<class T>
int queue<T>::isfull()
{

if(r==size)

return(1);

else

return(0);
}
template<class T>
int queue<T>::isempty()
{

if(r==0)

return(l);

else

return(0);

56

}

template<class T>
T queue<T>::first()
{

return(q[f]);

template<class T>
T queue<T>::last()

{

return(q(r]);

}

template<class T>

void queue<T>::display()

{
if(isempty()==1)
cout<<'\n queue is empty";
else
{
cout<<"\n queue contents is";
for(int i=fi<=r;i++)
cout<<q[il;

cout<<"\n";

}

57

void menul()

{

cout<<"\n l.integer queue";
cout<<"\n 2.floating stack";
cout<<"\n 3.char queue";

cout<<"\n 4.exit";

void menu2()

{

}

cout<<"\n l.insertion";

cout<<"\n 2.deletion";

cout<<"\n 3.display queue";
cout<<"\n 4.display first'element";
cout<<"\n 5.displaylast element";

cout<<"\n 6.exit"";

template<class T>

void operation(queue<T>a)

{

int ch;

int Xx;

menu2();

cout<<"\nEnter your choice";

cin>>ch;

58

while(ch<6)

{

switch(ch)

{

case 1:

{

cout<<"\n Enter the element to be inserted";

cin>>x;

a.insert(x);
break;

}

case 2:

{

x=a.del();

if(x==-1)

cout<<"™\n gueue is empty deletion is not possible"
else

cout<<"\n deleted element is"<<x;

break;

}

case 3:
{
a.display();

break;

59

case 4:

{

x=a.first();

cout<<"\n first element is"<<x;
break;

}

case 5:

x=a.last();
cout<<"\n the last element is"<<x;

break;

}
}

menu2();
cout<<"\nEnter your choice";
cin>>ch;

}

main()

int ch;
menul();

cout<<"\n Enter your choice";

60

cin>>ch;
while(ch<4)

{

switch(ch)

{

case 1:

{
gueue<int>a;
operation(a);

break;

case 2:

{
queue<float>a,
operation(a);
break;

}

case 3:

{
queue<char>a;
operation(a);
break;

}

}

61

menul();
cout<<"Enter your choice";
cin>>ch;

}
getch();

return(0);

Output:

l.integer queue
2.float queue
3.char queue.
4.exit.
Enter yourchoice:1
l.insertion
2.deletion
3.display queue contents
4.display.front.element
5.display rear element
6.exit
Enter your choice:1
Enter the element to be inserted:10
element is inserted
l.insertion
2.deletion
3.display queue contents
4.display front element
5.display rear element
6.exit

Enter your choice:1
Enter the element to be inserted:20
element is inserted

62

l.insertion

2.deletion

3.display queue contents
4.display front element
5.display rear element
6.exit

Enter your choice:1

Enter the element to be inserted:30

element is inserted
l.insertion
2.deletion
4.display front element
5.display rear element
6.exit

Enter your choice:4

front of the queue is:10
l.insertion
2.deletion
3.display queue contents
4.display front element
5.display rear element
6.exit

Enter your choice:3

gueue contains as follows:

10 20 30
l.insertion
2.deletion
3.display queue contents
4.display front element
5.display rear element
6.exit

Enter your choice:5

rear of the queue is:30
1.insertion
2.deletion
3.display queue contents
4.display front element
5.display rear element
6.exit

deleted element is:10
l.insertion
2.deletion
3.display queue contents
4.display front element
5.display rear element

63

6.exit

Enter your choice:6
l.integer queue
2.float queue
3.char queue.
4.exit.

Enter your choice:4
LINKED LISTS:

Lisst is a linear collection of data items/nodeglieitly ordered by a field,which
indicates the successor node in the list andatfisxible structure.ltems can be inserted and
deleted dynamically and easily and it facilitatgaamic allocation of nodes.

Node consists of two fields INFO and LINK

INFO LINK

NODE
INFO field contains the information about the begtgred in the list.
LINK field contains the address/pointer to the nigaan in the list.
Node structure declaration

struct node

{
int info;
struct node *link;
|5
struct node *first;
empty list
first=NULL;
function to allocate a.node and to initialize it
INFO LINK
X N
NEW
Struct node *new;
{
struct node *new;
new=(struct node *)malloc(sizeof(struct node));
new->info=x;
new->link=NULL;
return(new);
}

64

SINGLE LINKED LIST:

Linked list consists of an ordered set of nodes/

INFO LINK —> __ INFO LINK —— INFO _LINK
FIRST

FIRST Address/pointer which gives the locatiéthe first node of the“list.
/(NULL) signals the end of the list.

->(Arrow) indicates the successor node.

Example:

A 2010 » B 2002 » C 2012 » D 2006 —» E N

First=2000 2011) 2T002 T2012 2006T

ADDRESS INFO LINK
2000 A 2010
2001

2002 C 2012
2003

2004

2005

2006 E

2007

2008

2009 B 2002
2010

2011

2012 D 2006
2013

65

Program 2:
a)Stack ADT using Linked Lists.
2) a)Algorithm For Inserting an Item into the Stacks:

Procudure PUSH(s)
S pointer
x value in a cell

Stepl:{create a structure}
struct node
{
int data;
struct node *link;
3
struct node *top;
Step2:if top>=size then
print'stack overflow’
else
node *p;
p=new node;
p->data=x;
p->link=top;
top=p;

2) a) Algorithm For Deleting an Item into the Stack
function POP()

Stepl:int x;
node *p;
if top==0 then
print(‘stack under flow’
else
top=top->link;
X=p->data;
delete’p’;
Return(x);

2) a)Algorithm For display Items into a Stack s
66

function DISPLAY()
Stepl:{Check for stack underflow}

If top=0 then
Printf(‘stack is empty’)
Return

else
temp=top

repeate loop until temp is equal to zero
print'temp->data
top=top->link

2)a)Flowchart For Inserting an Item into the Stacks:

Print ‘Stack overflow

no

node *p;p=new node;p-
>data=x;p-
>link=top;top=p;

2) a) Flowchart For Deleting an Item into the Stack

es
Print ‘Stack underflon

67

top=top->link;x=p->data

Program 2)a):

no

#include<iostream.h>

#include<conio.h>
class linklist
{
private:
struct node
{
int data;
node* link;
}*top;
public:
void Init();
void display();
int isempty();
~linklist();
void push(int);

int pop();

68

int Topmost();
I3
void linklist::Init()
{
top=0;
}
int linklist::isempty()

{

if(top==0)
return(1);
else
return(0);
}
int linklist:: Topmost()
{
if(top==0)
return(-1);
else
return(top->data);
}
void linklist::push(int x)
{
node *p;

p=new node;

69

p->data=x;
p->link=top;
top=p;

}

int linklist::pop()

{
int x;
ifisempty()==1)

return(-1);

else
{
x=top->data;
delete top;
top=top->link;
return(x);

}

linklist::~linklist()
{
node *p;
while(top!=0)
{

p=top;

70

top=top->link;
delete p;

}

void linklist::display()

{

node *temp;
clrscr();

if(top==0)

cout<<"stack is empty\n";

}

else

{

temp=top;

while(temp!=0)

{
cout<<temp->data<<"\t"<<temp->link<<"\n";
temp=temp->link;

}

}

void menu2()

{

cout<<"\n \t 1.insertion";

71

cout<<"\n \t 2.deletion";

cout<<"\n \t 3.display stack contents";
cout<<"\n \t 4.top of the element";
cout<<"\n \t 5.exit";

}

void main()
{
int ch;
linklist [;
menu2();

cout<<"\nEnter your choice";

cin>>ch;

while(ch<5)

{

switch(ch)

{
int x;
case 1:
{
cout<<"\nEnter element to be inserted:";
cin>>x;
l.push(x);
cout<<"\nelement is inserted";

break;

72

case 2:

{

x=1.pop();

if(x==-1)

cout<<"\nstack is empty,deletion is not possiple"
else

cout<<"deleted element is"<<x<<"\n";

break;

}

case 3:

l.display();

break;

}

case 4:

{

int c;
c=I.Topmost();

cout<<"\ntop of the stack is:"<<c;

break;
}

}

menu2();

73

cout<<"\nEnter your choice";
cin>>ch;

}
getch();

74

Output:

l.insertion
2.deletion
3.display stack contents
4.top of the stack
5.exit
Enter your choice:1
Enter the element to be inserted:10
element is inserted
l.insertion
2.deletion
3.display stack contents
4.top of the stack
5.exit
Enter your choice:1
Enter the element to be inserted:20
element is inserted
l.insertion
2.deletion
3.display stack contents
4.top of the stack
5.exit

Enter your choice:1
Enter the element to be inserted:30
element is inserted
l.insertion
2.deletion
3.display stack contents
4.top of the stack
5.exit
Enter your choice:3
stack contains as follows:
30 1004
20 1002
10 1000
L.insertion
2.deletion
3.display stack contents
4.top of the stack
5.exit
Enter your choice:4
top of the element is:30
l.insertion
2.deletion
3.display stack contents
4.top of the element
5.exit

75

Enter your choice:2

deleted element is:30
l.insertion
2.deletion
3.display stack contents
4.top of the element
5.exit

Enter your choice:3

stack contains as follows:

20 1002

10 1000
l.insertion
2.deletion
3.display stack contents
4.top of the element
5.exit

Enter your choice:5

76

2)b) Queue ADT using Linked Lists.
2) b)Algorithm For Inserting an Item into a Queue Q
Procudure INSERT(ITEM)
ITEM information to be inserted at the rear of geleu
stepl:struct node{

t data;

node *link

}*r
Step2:{Check for Queue overflow}
If R>=SIZE then

Printf(‘Queue overflow’)

Return
Step3:node *p;

p=new node;

p->data=x;

p->link=0;
Step 4:if(f=r=0) then

f:r:p;

else

r->link=p;

r=p;

2) b) Algorithm For deleting an Item from a Queue Q
function DELETE()

Stepl:{Check for Queue underflow}
If F=R=0 then
Printf(‘Queue underflow’)
Return
Step2:{Delete the queue element at front end ame gt into item}
node *p;
int x;
3:{If queue is.empty after deletion,set front ardr pointers to 0}
If F=R then
p=t
f=r=0;
X=p->data;
delete p;
Return(x);
else
p=F,
f=f->data;
delete p;
return(x);

77

78

2) b)Algorithm For display Items into the Queue Q
function Dispaly(Q)

Q Array
Stepl: {Check queue values}
If F<O

Print(‘Queue is empty’)
Step2:{display Queue values}
temp=f;
repeate until temp not equal to zero
Print(temp->data)
temp=temp->link;

2) b)Flowchart For Inserting an Item into a Queue Q
Procudure INSERT(ITEM)
ITEM information to be inserted at the rear of geieu

Print ‘Queue overflow’

node *p

A 4
p=new node
p->data=x;
p->link=0

no

R->link=p
R=p

79

\/

2) b) Flowchart For deleting an Item from a Queue Q
function DELETE()
ITEM information to be inserted at the rear of geieu

Print ‘Queue Underflow

no
ITEM=p->data

:

— N0

p=f;f=f->link;x=p-
>data;delete p;

yeg

p=f,f=r=0;x=p-
>data;delete p

v

Stop

80

2) b)Algorithm For display Items into the Queue Q
function Dispaly(Q)
Q Array

es
Print ‘Queue is empty’

temp=F

|

Istemp
=0

no

\ A
v

yes l

Printf(temp->data)

A\ 4
+——1 temp=temp->link

81

82

Program 2)b): Queue ADT using Linked Lists.

#include<iostream.h>
#include<conio.h>
class queue
{
private:
struct node
{
int data,
node *link;
¥
public:
void init();
int first();
int last();
int isempty();
void insert(int);
int del();

void display();

~queue();
3
void queue::init()
{

f=r=0;

83

int queue::isempty()

{
if((f==0)&&(r==0))
return(l);
else
return(0);

}

void queue::display()

{
node *temp;
if(isempty()==1)
cout<<"\nqueue is empty";
else{
temp=f;
while(temp!=0)
{
cout<<temp->data<<"\t"<<temp->link<<"\n";
temp=temp->link;
}
}

}

void queue::insert(int x)

{
84

node *p;

p=new node;

p->data=x;
p->link=0;
if(isempty()==1)
{
f=r=p;
}
else
{
r->link=p;
r=p;
}
if(f==0)
=p;
}
int queue::del()
{
node *p;
int x;
if(isempty()==1)
return(-1);
else

if(f==r)

85

p=f,
f=r=0;

X=p->data;
delete p;
return(x);

}

else

{

p=f;
f=f->link;
x=p->data;
delete p;
return(x);

}

}
queue::~queue()
{
while(f!=0)

{

node *temp;
temp=f;
f=f->link;

delete(temp);

86

}

r=0;

}

void menu2()

{

cout<<"\n"<<"l.insert"<<"\n"<<"2.deletion"<<"\n"<B.display queue

contents"<<"\n"<<"4.exit\n";

}

void main()
{
clrscr();
queue g;
int ch;

menu2();

cout<<"\n Enter/your choice:";

cin>>ch;
while(ch<4)
{

switch(ch)

{

case 1:

{

int X;

cout<<"\nEnter element of the queue:";

87

cin>>x;

g.insert(x);

cout<<"\nelement is inserted";
break;

}

case 2:

{

cout<<"\ndeleted element is:"<<q.del();
break;

}

case 3:

{

cout<<"\ndisplay elements of the queue is:";
q.display();

break;

}

}

menu2();
cout<<"\n Enter your choice:";
cin>>ch;

}
getch();

88

Output:

l.insertion
2.deletion
3.display queue contents
4.exit
Enter your choice:1
Enter element of the queue:10
element is inserted
l.insertion
2.deletion
3.display queue contents
4.exit
Enter your choice:1
Enter element of the queue is:20
element is inserted
l.insertion
2.deletion
3.display queue contents
4.exit
Enter your choice:1
Enter element of the queue is:30
element is inserted
l.insertion
2.deletion
3.display contents
4.exit
Enter your choice:3
gueue contains as follows:
10 1000
20 1002
30 1004
l.insertion
2.deletion
3.display queue contents
4..exit
Enter your choice:2
deleted element is:10
l.insertion
2.deletion
3.display queue contents
4.exit
Enter your choice:3
gueue contents as follows:
20 1002
30 1004

89

l.insertion
2.deletion
3.display queue contents
4.exit
Enter your choice:4
Program 3:

Double ended queue using double linked List
/* PROGRAM TO DEMONSTRATE DE-QUEUE USING LINKEDLIST

#include<conio.h>
#include<iostream.h>
#include<malloc.h>
#define NULL O
class dlqueue
{
public:
int data,;
diqueue *next,*prev,*first,*last;
void insertAtFirst();
void insertAtLast();
void deleteAtFirst();
void deleteAtLast();

void display();

3
void main()

{
diqueue dl;

90

int ch;
clrscr();

dlqueue *temp;

while(1)
{

cout<<"\n 1l.Insert Element at first";
cout<<"\n 2.Insert Element at last";
cout<<"\n 3.Delete Element at first";
cout<<"\n 4.Delete Element at last";
cout<<"\n 5.Display list";
cout<<"\n 6.exit";
cout<<"\n Enter your choice(1/2/3..,

cin>>ch;

switch(ch)

case 1: dl.insertAtFirst(); break;
case 2: dl.insertAtLast(); break;
case 3: dl.deleteAtFirst(); break;
case 4: dl.deleteAtLast(); break;
case 5: dl.display(); break;

default : cout<<"\n\tINVALID ENTRY";

}
91

void dlqueue::deleteAtFirst()

{

if(first->next==NULL)
first=last=NULL,;

else

{
first=first->next;
first->prev=NULL;

}

display();

return;

}

void dlqueue::deleteAtLast()
{
if(first->next==NULL)
first=last=NULL;
92

else

last=last->prev;
last->next=NULL;

}

display();

return;

}

void dlgueue::insertAtLast()
{
dlqueue *temp;
cout<<"\nEnter element:";
cin>>temp->data;
temp=temp->next;
temp->next=NULL,
temp->prev=NULL;
if(first==NULL && last==NULL)
first=last=temp;
else
{
last->next=temp;

temp->prev=last;

93

last=temp;

display();

return;

void dlqueue::insertAtFirst()
{
dlqueue *temp;
cout<<"\nEnter element:";
cin>>temp->data;
temp=temp->next;
temp->next=NULL;

temp->prev=NULL;

if(first==NULL && last==NULL)
first=last=temp;

else

first->prev=temp;
temp->next=first;
first=temp;
first->prev=NULL,;

94

}
display();

return;

}

void dlqueue::display()
{

diqueue *p;

p=first;
if(first==NULL && last==NULL)
cout<<"\n\tList is Empty";

else

{

cout<<"\n\n";
while(p!'=NULL)

{

cout<<p->data<<" "
p=p->next;

}

} return; }

Program 4://*binary serach tree searching,insertingdeleting*//
Algorithm: algorithm for inserting an element into the binaearch tree
Stepl:g=null,p=tree
Step2:repeate until p not equal to null

a)if key==k(p) then

return(p);

a=p;

95

b)if key<k(p) then

p=left(p)

else

p=right(p);
step3:v=maketree(rec,key);
step4:if g==null then

tree=v;

else

if(key<k(q) then

left(q)=v;

else

right(q)=v;
step5:return(v);

96

4)Flowchart:flowchart for inserting an element into the binagarch tree

start
\ 4
Q=null
P=tree
v
V=maketree(rec,key) [€—
Tree=v Return(p)
v
Q=p
Left(g)=v '

P=left(p)

Right(q)=v

Return(p)

97

4)Algorithm: algorithm for deleting an element into the binaggrsh tree

Stepl:g=null,p=tree
Step2:repeate until p != null and k(p)!=key
1)g=p;
2)p=(key<k(p))?left(p):right(p);
Step3:if p==null
Return
Step4:if left(p)==null then
Rp=right(p)
Else
If(right(p)==null then
Rp=left(p)
Else
a)f=p;
rp=right(p);
s=left(rp)
b)repeate until s !=null
f=rp;
rp=s
s=left(rp)
c)if fl=p then
left(f)=right(rp)
right(rp)=right(p);
d)left(rp)=left(p)
step5:a)if g==null
tree=rp
else
if p==left(q) ? left(q)=rp:right(q)=rp
b)freenode(p)
return

98

99

4)Algorithm: algorithm for deleting an element into the binaggrsh tree

P=tree Q=null
v

Is p!=null
&&K(p)'=key

Right(p)

A

return

Rp=right(p)

If
left(p)==null

A

Left(p)

F=rp,rp=s.s=left(rp)

F=p,rp=right(p),s=left(rp)

Left(rp)=left(p)

Left(f)=right(rp)
Right(rp)=right(p) 4_‘

Left(q)=rp

Rp=left(p)

Tree=rp

Right(q)=rp

Freenode(p),return

n
—+
4 o
©
A 4

100

4)Algorithm: algorithm for searching an element into the birsegrch tree

Stepl:p=tree

Step2:repeate until p!=null and key!=k(p)
a)p=(key<k(p))?left(p):right(p);

b)return

4)Flowchart: Flochart for searching an element into the binaarsh tree

)
start

Left(p)

Is p!=null
and

key!'=k(p)

Right(p)

return
A 4
4 N\
stop
~— @

101

4)program:

#include<stdio.h>

#include<conio.h>

template<class e,class k>

class BSTree:public BinaryTree<e>

{
public:
bool Search(const k& k,E& e)const;
BSTree<E,K>&lInsert(const E& e);
BSTree<E,K>&Delete(const K& k,E& e);
void Ascend()

{
InOuput();

3
template<class e,class k>
bool BSTree<E,K>::Search(const K& k,E &e)const
{

BinaryTreeNode<E>*p=root;

while(p);

if(k<p->data)p=p->leftchild;

else

if(k>p->data)p=p->rightchild,;

else

{

e=p->data;

rturn true;}

return false;
}
template<class E,class k>
BSTree<E,K>&BSTree<E,k>::Insert(const E& e)
{

binaryTreeNode<E>*p=root;

*PP=0;

while(p);

{

PP=P;

if(e<p->data)p=p->leftchild;

else

if(e>p->data)p=p->Rightchild;

else

throw BadInput();

}

BinaryTreeNode<E>*r=new BinaryTreeNode<E>(e);

if(root)

{

if(e<pp->data)pp->leftchild=r;

else

102

pp->rightchild=r;
}

else

root=r;

return *this;
}
template<class E, class K>
BSTree<E,K>& BSTree<E,K>::Delete(const k& k,E& €)
{//Delete element with key k and putitin e.
Il set p to point to node with key k
BinaryTreeNode<E> *p = root, //search pointer
*pp = 0;// parent of p
while (p && p->data != k)
{//move to a child of p
pPpP=p;
if (k<P->data)p=p->LeftChild;
else p=p->RightChild;
}
if('p) throw BadInput(); / no element with key k
e = P->data;//save element to delete
/lrestructure tree
/I handle case when p has two children
if (P->LeftChild && p->RightChild)
{/ltwo children
/[convert to zero or one child case
/I find largest element in left subtree of p
BinaryTreeNode<E> *s = P->LeftChild,
*ps = p;//parent of s
while(s->RightChild)
{//Imove largest from/s.to p
P->data = S->sata;
P=s;
PP = Pps;
/I p has at most one child
Il save child pointer in ¢
BinaryTreeNode<E> *c;
if (P->LeftChild) C = P->LeftChild;
else c + P->RightChild;
/[Delete p
if (P == root) root = c;
else{//is p left or right child of pp?
if (p==pp->LeftChild)
pp->LeftChild = c;
else pp->RightChild = c;}
delete p;
return *this;

103

Circular Queue:

In a circular queue all locations are treated ezutar such that the first location Q[1],followseth
last location(Q[MAX])

Representation of circular Queue:

R
_

Max-1 2

Max

Basic Operation Associated on Circular Queue:
1) Insert an item into the Circular Queue.
2) Delete an item into the circular Queue.
1) a)Algorithm Fordnserting an Item into a Circular Queue CQ:
Procudure CINSERT(CQ,MAX,F,R,ITEM)
CQ Array
MAX Queue size
F front Pointer
R rear pointer
ITEM information to be inserted at the rear of geleu
Stepl:{Reset rear pointer}
If R=MAX then
R=1
Else
R=R+1
Step2:{Check for overflow}
If R=F then
Print(‘Circular Queue overflow’)
Step 3:{Insert an element into a curcular queue}

104

CQI[R]=ITEM

Step 4:{set Front pointer property}
If F=0,then F=1
return

105

1) b) Algorithm For deleting an Item from a curcular Queue CQ:
function CDELETE(CQ,MAX,F,R)

CQ Array

MAX Queue size

F front Pointer

R rear pointer

ITEM information to be inserted at the rear of geleu

Stepl:{Check for underflow}
If F=R then
Printf(‘Curcular Queue underflow’)
Return
Step2:
If F=N then
F=1
Else
F=F+1
Step3:{Delete element }
ITEM=CQIF]
Return(ITEM)
Step4:{check for circular queue is empty afteretieh}
If F=R then
F=0
R=0
{Otherwise set front pointer}
Else
If F=MAX then
F=1
Else
F=F+1
Return(ITEM)

1) c)Algorithm For display Items into the Circular Queue CQ
function Dispaly(CQ)

CQ Array
Stepl: {Check queue values}
If F<O

Print(‘Queue is empty’)
Step2:{display Queue values}
For |l value Fto R
Print(CQIl])
=1+1

106

1) a)Algorithm For Inserting an Item into a Circular Queue CQ:
Procudure CINSERT(CQ,MAX,F,R,ITEM)

CQ Array

MAX Queue size

F front Pointer

R rear pointer

ITEM information to be inserted at the rear of geleu

R=1 R=R+1

Print(‘Circular
Queue overflow’)

CQIR]=IT

EM
F=1
Ve |
stop P v

107

1) b) Algorithm For deleting an Item from a curcular Queue CQ:
function CDELETE(CQ,MAX,F,R)

CQ Array

MAX Queue size

F front Pointer
R rear pointer

ITEM information to be inserted at the rear of geleu

F=0

Print(‘Circular
Queue underflow’)

x=Qlf
|

ITEM=CQ[F],
F=0,R=-1

F=F+1

stop

k

108

109

Program 5:

Implement Circular Queue ADT using an Array

#include<iostream.h>
#include<conio.h>
#define size 10
template<class T>
class cq
{
private:
T q[size];
int f,r;
public:
void init();
void insert(T x);
void display();
T del();
int isfull();
int isempty();
T first();
T last();
3
template<class T>
void cq<T>::init()
{
110

f=0;

r=-1;

}

template<class T>
int cq<T>::isfull()

{
if(((r+1)%size==f)&&(r'=-1))
return(l);

else

return(0);

}

template<class T>
int cq<T>::isempty()
{

if(r==-1)

return(l);

else

return(0);

}

template<class T>
T cq<T>::first()

{

return(q[f]);

}
111

template<class T>

T cq<T>::last()

{

return(r);

}

template<class T>
void cq<T>:insert(T x)
{

if(isfull()==1)
cout<<"circuler queue is full.inseration is notsgue\n";
else

{

if(r==size-1)

r=0;

else

r++;

qlrl=x;
cout<<"inserted\n";
f=1,

}

}

template<class T>
T cq<T>::del()

{
112

T X;
if(isempty()==1)

return(-1);

else
if(f==r)

{

x=qf];
f=0;

r=-1;
return(x);
}

else

{

x=q[f];
if(f==size-1)
f=0;

else

f++;
return(x);

}
}

template<class T>
void cq<T>::display()

{
113

int i;
clrscr();
if(isempty()==1)

cout<<"circular queue is empty\n";

else
if(f==r)
{
cout<<"circulr queue contains only one elemént\n
cout<<qg[fl<<"\n";

}

else

{

if(f<r)

{

cout<<"circular contents are as folows\n";
for(i=0;i<=f-1;i++)
cout<<"empty\t";
for(i=f;i<=r;i++)
cout<<q[i]<<"\t";
for(i=r-1;i<=size-1;i++)
cout<<"empty\t":
cout<<"\n";

}

else

114

{

cout<<"circular queue contain are as folows\n";
for(i=0;i<=r;i++)
cout<<q[i]<<"\t";

for(i=r+1;i<=f-1;i++)

cout<<q[i]<<"\t";
cout<<"\n";}
}
}
void menul()
{
cout<<"\nl.Interger queue”;
cout<<"\n2.float queue’;
cout<<"\n3.char queue™;
cout<<"\n4.exit";

}

void menu2()

{
cout<<"\nl.insertion";
cout<<"\n2.deletion";
cout<<"\n3.display queue";
cout<<"\n4.display first element”;

cout<<"\n5.exit";

115

template<class T>
void operation(cq<T>a)
{

int ch;

int x;

menu2();

cout<<"Enter your choice\n";
cin>>ch;

while(ch<5)

{

switch(ch)

{

case 1:

{

cout<<"Enter'the element to be inserted\n";
cin>>x;

a.insert(x);

break;

}

case 2:

{

x=a.del();

if(x==-1)

cout<<"queue is empty,del is not possible\n™;

116

else
cout<<"deleted elelment is"<<x<<"\n";
break;

}

case 3:

{
a.display();

break;

case 4:

{

x=a.first();

cout<<"\n first element of the cqueue is:"<<Xx;
break;

}

case 5:

{

x=a.last();

cout<<"the last element is"<<x<<"\n";

break;

}
}

menu2();

cout<<"Enter your choice\n";

117

cin>>ch;

}

}

main()

{
int ch;
menul();

cout<<"Enter your choice\n";

cin>>ch;
while(ch<4)
{
switch(ch)
{
case 1:
{
cq<int>a;
operation(a);
break;

}

case 2:

{

cg<float>a;
operation(a);
break;

118

case 3:

{

cq<char>a;
operation(a);
break;

}

}

menul();

cout<<"Enter your choice\n";

cin>>ch;
}
getch();

return(0);

119

Output:

l.integer queue
2.float queue
3.char queue.
4.exit.
Enter yourchoice:1
l.insertion
2.deletion
3.display queue contents
4.display front element
5.exit
Enter your choice:1
Enter the element to be inserted:10
inserted
l.insertion
2.deletion
3.display queue contents
4.display front element
5.display rear element
6.exit

Enter your choice:1
Enter the element to be inserted:20
inserted
l.insertion
2.deletion
3.display queue contents
4.display front element
5.display rear element
6.exit

Enter your choice:1
Enter the element to be inserted:30
element is inserted
L.insertion
2.deletion
4.display front element
5.exit
Enter your choice:4
first element of the cqueue is:10
l.insertion
2.deletion
3.display queue contents
4.display front element
5.exit
Enter your choice:3

120

gueue contains as follows:

empty 10 20 30 empty empty empty empty empty eraptgty empty empty
l.insertion
2.deletion
3.display queue contents
4.display front element
5.exit

Enter your choice:2

deleted element of the cqueue is:10
l.insertion
2.deletion
3.display queue contents
4.display front element
5.exit

deleted element is:10
l.insertion
2.deletion
3.display queue contents
4.display front element
5.exit
Enter your choice:3
dispalay contents as follows:
empty empty 20 30 empty empty empty empty emptytgmmpty empty empty
l.integer queue
2.float queue
3.char queue.
4. exit.

Enter your choice:4

121

Program: 6

Non-recursive function to traverse the given binay tree in in order, Pre order, post order

a)Algorithm: Algorithm for preorder traversal

Int function preorder(node *)

Stepl:if pointer not equal to null then
a)print p->data
b)call function preorder(p->Ichild)
c)call function preotder(p->rchild)

b)Algorithm: Algorithm for inorder traversal

Int function preorder(node *)

Stepl:if pointer not equal to null then
a)call function inorder(p->Ichild)
b)print p->data
c)call function inorder(p->rchild)

c)Algorithm: Algorithm for postorder traversal

Int function preorder(node *)

Stepl:if pointer not equal to null then
a)call function postorder(p->Ichild)
b)call function postotder(p=->rchild)
c)print p->data

122

a)flowchart:flowchart for preorder traversal

)

If
Pl=null

A 4

»
»

Printf p->data

|

Preorder(p->Ichild)

A

A 4
e Preorder(p->rchild)

'

stop

a)flowchart:flowchart for inorder traversal

start

A 4

R If
" Pl=null

Inorder(p->Ichild)

|

v

A

Printf p->data

A 4
e Inorder(p->rchild)

A 4

stop |

V,

123

a)flowchart:flowchart for postorder traversal

If

Pi=null

A

Postorder(p->Ichild)

!

Postorder(p->rchild)

A 4

Printf p->data

Y
stop |

124

Programe:
include<iostream.h>
include<conio.h>
class list
{
public:
int item;
list *left;
list *right;
I3
void display(list *t,int)
{
int j;
if (t'=NULL)
{
display(t->left,i+1);
for(int j=1;j<i;j++)
cout<<"
cout<<" "<<t->item<<endl,
display(t->right,i+1);
}

125

}
void preorder(list *t)
{

if (1=NULL)

{

cout<<" "<<t->item;
preorder(t->left);

preorder(t->right);

}
}
void inorder(list *t)
{

if (1=NULL)

{

inorder(t->left);
cout<<" "<<t->item;,
inarder(t->right);
}
}
void postorder(list *t)
{
if (t1=NULL)

{

postorder(t->left);
126

postorder(t->right);
cout<<" "<<t->item;
}

}

list *create(list *t,int item)

{

if (t==NULL)
{
t=new list;
t->left=t->right=NULL,;
t->item=item;
return t;
}
else
if (t->item>item)
t->left=create(t->left,item);
else
if (t->item<item)
t->right=create(t->right,item);
else
cout<<endl|<<"Duplicate Element";
return t;

}

void main()

127

{

list *start=NULL;
int item;

char wish;
clrscr();

do

{

cout<<"Enter Elment :";
cin>>item;
start=create(start,item);
cout<<"Wish u continue(y/n):";
cin>>wish;
}
while(wish=="y" || wish=="Y");
cout<<end|<<"Given B Tree is "<<endl;
display(start,1);
cout<<endl<<"PreOrder ";
preorder(start);
cout<<endl<<"Inorder ";
inorder(start);
cout<<endl|<<"PostOrder ";
postorder(start);

getch();

}
128

> //[program to implement inorder,preorder and paigotree traversing.

#include<iostream.h>
#include<conio.h>
int a[6],i=0;
class list
{
public:
int item;
list *left;
list *right;
3

[* void display(list *t,int i)
{

int j;

if(t'=NULL)

display(t->left,i+1);

couts<" "<<t->item<<endl;

display(t->right,i+1);
}
}
*/

void preorder(list *t)
{

if(t'=NULL)

{

cout<<" "<<t->item;
preorder(t->left);
preorder(t->right);

}

}

void‘inorder(list *t)
{

if(t'=NULL)

{

inorder(t->left);
cout<<" "<<t->item;
inorder(t->right);

}

}

void postorder(list *t)

{

129

if(t'=NULL)

{

llcout<<" "<<t->item;
postorder(t->left);
postorder(t->right);
cout<<" "<<t->jtem;

list *create(list *t,int item)

{

if(t==NULL)

{
t=new list;
t->left=t->right=NULL;
t->item=item;
afil=item;
i++;

return t;

}
else
if(t->item>item)
t->left=create(t->left,item);
else
if(t->item<item)
t->right=create(t->right,item);
else
cout<<endl<<"duplicate elements";
return t;
}
void dis()
{
for(int j=0;j<i;j++)
cout<<a[j]<<endl;

}

void main()

{
list *start=NULL;
int item;
char wish;
clrscr();
do
{
cout<<"enter element”;
cin>>item;
start=create(start,item);
cout<<"wish to continue(y/n):";
cin>>wish;
}
while(wish=="Y"||wish=="y");

130

cout<<endl<<"given btree is:"<<endl;
dis();

cout<<endl<<"preorder";
preorder(start);
cout<<endl<<"Inorder";

inorder(start);
cout<<endl<<"PostOrder";
postorder(start);

getch();

131

Output:

Enter element:9

wish u continue(y/n):y
Enter element:6

wish u continue(y/n):y
Enter element:5

wish u continue(y/n):y
Enter element:4

wish u continue(y/n):y
Enter element:3

wish u continue(y/n):y
Enter element:2

wish u continue(y/n):y
Enter element:1

wish u continue(y/n):n
given btree is:

PreOrderr9654321

INOrder:1234569

PostOrder:1234569
Enter element:9

wish u continue(y/n):y

Enter element:7

wish u continue(y/n):y

Enter element:3

wish u continue(y/n):y

Enter element;6

wish u continue(y/n):y

Enter element:2

wish u.continue(y/n):y

Enter element:1

wish u continue(y/n):y

Enter element:0

wish u continue(y/n):n

Enter element:4

wish u continue(y/n):n

given btree is:

PreOrder:7321064
132

INOrder:0123467 PostOrder:01 24637

Program 7:
Implementation of BFS and DFS for the given graph.

Algorithm: algorithm for DFS for the given graph
Stepl:for everynaode nd
Step2:visted(nd)=false
Step3:s= apointer to rhe starting node for theetrsad
ndstack=the empty stack
Step4:repeate until s '=null
a)visit(s)
b)firstsucc(s,yptr,nd)
c)repeate until nd '=null and visited(nd)==true
nextsucc(s,yptr,nd)
d)repeate until nd==null and empty(ndstack)==false
1)popsub(ndstack,s,yptr)
nextsucc(s,yptr,nd)
2)repeate until nd!=null and visited(nd)==true
nextsucc(s,yptr,nd)
3)if nd !=null
Push(ndstack,s.yptr)
S=nd
Else
S=select

133

7)Flowchart: flowchart for DFS for the given graph

For each node Nd
visited(Nd)=false

S=a pointer to the starting
node for the traversal
Ndstack:thf;-[empty stack

Is Visit(s)
Si=null Firstsucc(s,yptr,nd)
B v

Is
Nd!=null and
visited(Nd)==true

A 4

A

nextsucc(s,yptr,nd)

Is L
Nd==null and popsub(ndstack,s,yptr

empty(ndstack)==false

nextsucc(s,yptr,nd) \

| ne tsucc(s,yptr,nd
A

pushsub(ndstack S,ypir

TN

Is
Nd!=null and
visited(Nd)==true

134

7)Algorithm: algorithm for BFS for the given graph
Stepl:mdqueue=the empty queue
Step2:repeate until s '=null
a)visit(s)
b)insert(ndqueue,s)
c)repeate empty(ndqueue)==false
a)x=remove(ndqueue)
b)firstsucc(x,yptr,nd
d)repeate until nd!=null
1)if visited(nd)==false then
a)visit(nd)
b)insert(hdqueue,nd)
2)nextsucc(x,yptr,nd)
e)s=select()

135

7)Algorithm: flowchart for BFS for the given graph

start

A 4
Ndqueue=the
empty queue

|

|

Visit(s)
Insert(ndqueue,s

A 4

Empty(ndn

X=remove(ndqueue)

ode)==fals

A 4

Firstsucc(x,yptr,Nd)

if
visited(Nd)
==false

Visit(Nd)

A 4

Insert(ndqueue,Nd)

Nextsucc(x,yptr,Nd)

A 4
S=select()

A 4

stop

136

7)Program:

void network::bfs(int v, int reach[], int lable)
{//breadth first search.
linkedqueue<int> q;
initializepos();//init graph iterator array
reach[v]=label,
a.add(v);
while(!g.isempty(){
int w;
g.deleter(w);
int u = begin(w);
while(u) {
if ('reach[u]) {
g.add(u);
reach[u] = label;}
u=nextvertex(w);
}
}
void network::dfs(int v,int reach([], int label)
{
initializepos();
dfs(v, reach, label);
deactivatepos();

}

void network::dfs(int v, int reach([], int label)
{

reach[v]= label;

int u=begin(v);

while(u)

if('reach[u]) dfs(u, reach, label);
u= nextvertex(v);

}

Or

8> BSTDS.
include<iostream.h>
include<conio.h>
template<class T>
class bst
{
T info;
bst *Iptr;
bst *rptr;
137

public:
bst *insert(bst *node, T item);
void display(bst *node);

template<class T>
bst<T> * bst<T>::insert(bst<T> *node, T item)
{
if (node==NULL)
{
node=new bst<T>;
node->info=item;
node->rptr=node->Iptr=NULL;
return node;
}
else
if (node->info<item)
node->rptr=insert(node->rptr,item);
else
node->Iptr=insert(node->Iptr,item);
return node;
}
template<class T>
void bst<T>::display(bst<T> *node)
{
if (node!=NULL)
{
cout<<node->info<<" ";
display(node->Iptr);
display(node->rptr);
}
}
void main()
{
bst<int> *root;
root=NULL,
clrscr();
root=root->insert(root,30);
root=root->insert(root,20);
root=root->insert(root,50);
root=root->insert(root,25);
cout<<"Elements in the bst are ";
root->display(root);

138

Quick Sort

Algorithm Analysis:The quick sort is an in-placévide-and-conquer, massively recursive
sort. As a normal person would say, it's esseptafster in-place version of the merge
sort. The quick sort algorithm is simple in thedsyf very difficult to put into code
(computer scientists tied themselves into knoty/éars trying to write a practical
implementation of the algorithm, and it still hastt effect on university students).

The recursive algorithm consists of four steps ¢hldlosely resemble the merge sort):

1.
2.
3

4.

If there are one or less elements in the arrayetedsted, return immediately.

Pick an element in the array to serve as a "pipotht. (Usually the left-most element in the arimysed.)
Split the array into two parts - one with elemdatger than the pivot and the other'with elementalker
than the pivot.

Recursively repeat the algorithm for both halvetheforiginal array.

The efficiency of the algorithm is majorly impacted which element is choosen as the pivot poine Wbrst-case
efficiency of the quick sorQ(n?), occurs when the list is sorted and the left-nedsment is chosen. Randomly
choosing a pivot point rather than using the leftstrelement is recommended if the data to be stédandom.
As long as the pivot point is chosen randomly,ghiek sort has an algorithmic complexity@¢n log n).

Pros: Extremely fast.
Cons: Very complex algorithm, massively recursive.

139

Empirical Analysis

Quick Sort Efficiency
0.35 -

(=]
L)
™

0.25 /

o2

Seconds

015

01]

0.05

i _J’f‘

0 100 1000 10000 25000 50000 75000 100000

The quick sort is by far the fastest of the comrsorting algorithms. It's possible to write a spepiarpose sorting
algorithm that can beat the quick sort for someadats, but for general-case sorting there isgtharg faster.

As soon as students figure this out, theirimmediauplulse is to use the quick sort for everythiradter all, faster
is better, right? It's important to resist thiseirghe quick sort isn't always the best choicem&sitioned earlier, it's
massively recursive (which means that for verydasgrts, you can run the system out of stack spetty easily).
It's also a complex algorithm - a little too compte make it practical for a one-time sort of 2&nits, for example.

With that said, in most cases the quick sort istibst choice if speed is important (and it almbsags is). Use it
for repetitive sorting, sorting of medium to ladges, and as a default choice when you're notyraare which
sorting algorithm to‘use. Iranically, the quick shas horrible efficiency when operating on listattare mostly
sorted in either forward or reverse order - avbid those situations.

140

Program 8:

Implement the following Sorting methods.

1) Quick sort 2) Merge sort 3) Heap sort.

8)1) write an algorithm for quick sort
procedure for quicksort(K,LB,UB)

K Array oa n elements

LB lower bound of the current sublist
UB upper bound of the current sublist
I Index variable

J Index variable

KEY key value

FLAG logical variable

steplflag=true
step2: if LB<UB
I=Lb
J=Ub+1
KEY=K{LB}
repeate while(FLAG)
=1+1
repeate while K[l][<KEY
=1+1
J=J+1
repeate while K[J]=>KEY
J=J-1
if I<J then
K[1]=K[J]
else
FLAG=false
K[LB}=K[J]
call QUICKSORT(K,LB,J-1)
call QUICKSORT(K,J+1,UB)
step3return

141

)1) write a flowchart for quick sort

gsort(K,LB,UB)
4

\ 4

FLAG=true

I=LB
J=UB+1
KEY=K[LB]

—»

=1+1

gsort(K,J+1,UB) |

gsort(K,LB,J-1)

true

.

-1. 4__

no

{k

v
v, STOP

142

K[I]=K[J]

+1

J

=J-1

FLAG=false

8)1) write a program for quick sort
#include<iostream.h>
#include<conio.h>

void g_sort(int [],int,int);

void main()
{
int n;
int a[20];
clrscr();

cout<<"how many numbers do you want to Enter";
cin>>n;

cout<<"Enter numbers";

for(int i=0;i<n;i++)

cin>>alif;

g_sort(a,0,n-1);

cout<<"display elements after quicksort";
for(i=0;i<n;i++)

cout<<afi]<<"\t";

void g_sort(int numbers[], int left, int right)

{

int pivot, |_hold, r_hold;

|_hold = left;

143

r_hold = right;
pivot = numbers[left];
while (left < right)
{
while ((numbers[right] >= pivot) && (left < rig ht))
right--;
if (left = right)
{
numbers[left] = numbers[right];
left++;
}
while ((numbers|left] <= pivot) && (left < righ t))
left++;
if (left = right)
{
numbers[right] = numbers]left];

right--;

}

numbers][left] = pivot;

pivot = left;
left =1 hold;
right = r_hold;

if (left < pivot)
g_sort(numbers, left, pivot-1);
if (right > pivot)

g_sort(numbers, pivot+1, right);

144

output:

how many numbers do you want to Enter:6
Enter numbers:987534

elements after quicksort:3457 89

how many numbers do you want to Enter:10
Enter numbers:9875341-3-20

elements after quicksort:-2-301345789

145

)b)Mergesort algorithm:
Program:

#include<iostream.h>

#include<conio.h>

int 1[20];

int 11[20];

int 12[20];

void sort();

void merge();

void main()

{
int i,j,k;
clrscr();
cout<<"merge to already sorted lists";
cout<<"Enter 10 integers for list1:";
for(i=0;i<10;i++)
cin>>11]i];
cout<<"Enter 10 numbers for list2:";
for(i=0;i<10;i++)
cin>>12[i];
sort();

146

}

merge();

cout<<"after merge list";

for(i=0;i<20;i++)
cout<<I[i];

getch();

void sort()

{

int i.j.t;
for(i=0;i<9;i++)
for(j=0;<9;j++)
{
if(IL[[]>11[+1])
{

t=I1[j];

I [j]=11[j+1];
I1[j+1]=t;

}
if(12[]>12[j+1])
{

t=I2[j];
12[j]=12[j+1];
12[+1]=t;

}

}

147

}

void merge()

{
int i=0,j=0,k=0;
while(k<20)
{
if(1L[i]<12[i])
I[k+-+]=11[i++];
else
I[k++]=12[j++];

}

or

> Merge Sort.
#include<iostream.h>
#include<conio.h>
class msort
{
public:
int n,a[20];
msort(int-k)
{
n=k;
}
void read();
void disp();
void sort(int,int);
void merge(int,int,int);

5

void msort::read()

{

inti;

cout<<"\n enter the elements:";

for(i=0;i<n;i++)

{

148

cin>>a(i;
}
}

void msort::disp()
{. .
inti;
for(i=0;i<n;i++)
{cout<<a[i]<<"\t";
}
}

void msort::sort(int m,int n)
{
int h;
if(m<n)
{
h=(m+n)/2;
sort(m,h);
sort(h+1,n);
merge(m,h,n);
}
}
void msort::merge(int m,int h,intn)

{
int i,j,k,b[20];

i=m;

j=h+1;

k=m:;
while((i<=h)&&(j<=n))

{
if(a[i]<ali])
{

blk]=a[l];
k=k+1;
i=i+1;

}

else

{
blk]=al[j];
k=k+1;
=i+,

}

}
while(i<=h)
{
b[k]=alil;
k++;
149

i++;

}

while(j<=n)

{
blk]=a[j];
k++;

j++;

}

for(i=m;i<=n;i++)
a[i]=b[i;
}

void main()

{

clrscr();

int n;

char ch="y";
while(ch=="y'||ch=="Y")

{

cout<<"Enter the no:";

cin>>n;

msort b(n);

b.read();

b.sort(0,n);

cout<<"\n The sorted array.is :"<<endl,
b.disp();

cout<<"\n Do you want to continue ?";
cin>>ch;

}
getch();

}

Enter 20 numbers for list1:0123456 789
Enter 10 numbers for list1:01 23456789

After merge list:001122334455667 B89

150

151

8)c)Heap sort algorithm:

stepl:arrange elemnets of a list in correct forra binary tree
step2:remove top mostelements of the heap

step3:rearrange the remaining elements from a hi@approcess is continued till we
getsortedlist

Program: Heap Sort.
#include<iostream.h>
#include<conio.h>
#define max 20;
int heap[21];
void insert(int,int,int);
void makeheap(int);
void heapsort(int);
void main()

{
inti,j,n;
clrscr();
couts<"how many numbers are there for sorting?:";
cin>>n;
for(i=1;i<=n;i++)
cin>>heapli];
makeheap(n);
cout<<"after heapsort";
heapsort(n);

for(i=1;i<=n;i++)

152

}

cout<<heap[i]<<" ";
cout<<"\n";

getch();

void makeheap(int size)

{

}

int k,kmax;
kmax=size/2;
for(k=kmax;k>=1;k--)

insert(heaplk],k,size);

void insert(int i,int n,int s)

{

int c,t;
c=n*2,
while(c<=s)
{
if(e<s && heap|c]<heap[c+1])
Ct++;
if(i>=heap|c])
break;
else
{
t=heap[n];
heap[n]=heap|c];
153

heap|c]=t;
n=c;

c=n*2;

void heapsort(int s)

{
inti,,t;
for(i=s:i>1:i--)
{
t=heap]i;
heapli]=heap[1];
heap[1]=t;
insert(heap[1],1,i-1);
}
}

Output:
how many numbers do you want to Enter:5

Enter numbers:6 4321
elements after mergesort:1 2346
how many numbers do you want to Enter:6

Enter numbers:5341-3 0

154

elements after mergesort:-301345

Program :9

Insertion into a B Tree and deletion from a B tree

B+ TREES
B Trees B Trees are multi-way trees. That is each nodéaties a set of keys and pointers. A B
Tree with four keys and five pointers represengsrtiinimum size of a B Tree node. A B Tree
contains only data pages.

B Trees are dynamic. That is, the height of the gy@ws and contracts as
records are added and deleted.

B+ TreesA B+ Tree combines features of ISAM and B Treesohtains
index pages and data pages. The data pages alpjagaras leaf nodes in the
tree. The root node and intermediate nodes areyalimdex pages. These
features are similar to ISAM. Unlike ISAM, overflopages are not used in
B+ trees.

The index pages in a B+ tree are constructed thrdiug process of inserting
and deleting records. Thus, B+ trees grow and aonlike their B Tree
counterparts. The contents and the number of ipdges reflects this growth
and shrinkage.

B+ Trees and B Trees use a "fill factor” to conthe growth and the
shrinkage. A 50% fill factor would be the minimuor fany B+ or B tree. As
our example we use.the smallest page structure.mbans that our B+ tree
conforms to the following guidelines.

Number of Keys/page 4
Number of Pointers/page 5
Fill Factor 50%

Minimum Keys in each page2

As this table indicates each page must have a mmiwf two keys. The root page may violate
this rule.

The following table shows a B+ tree. As the exaniplstrates this tree does
not have a full index page. (We have room for omeatkey and pointer in the
root page.) In addition, one of the data pagesatosiempty slots.

B+ Tree with four keys

155

156

Adding Records to a B+ Tree

The key value determines a record's placemenBin tiee. The leaf pages are maintained in
sequential order AND a doubly linked list (not simwonnects each leaf page with its sibling
page(s). This doubly linked list speeds data moverag the pages grow and contract.

We must consider three scenarios when we add adrezwa B+ tree. Each
scenario causes a different action in the insgdrahm. The scenarios are:

Theinsertalgorithm for B+ Trees

Leaf Page | Index Page

Full FULL Action

NO NO Place the record in sorted position in therapriate leaf page

1. Split the leaf page
2. Place Middle Key in the index page in sorted order.
3. Left leaf page contains records with keys below the
YES NO middle key.
4. Right leaf page contains records with keys equakto
greater than the middle key.

Split the leaf page.
Records.with keys < middle key go to the left Ipage.
Records with keys >= middle key go to the right jgage.

WwnN e

Split the index page.

Keys < middle key go to the left index page.

Keys > middle key go to the right index page.

The middle key goes to the next (higher level) inde

YES YES

Iy P

IF the next level index page is full, continue &pig the
index pages.

lllustrations of the insert algorithm
The following examples illlustrate each of iheert scenarios. We begin with the simplest
scenario: inserting a record into a leaf pageithaot full. Since only the leaf node containing 25

and 30 contains expansion room, we're going tatimseecord with a key value of 28 into the
B+ tree. The following figures shows the resultto$ addition.

Add Record with Key 28

157

Adding a record when the leaf page is full but thendex page is not

Next, we're going to insert a record with a keyueabf 70 into our B+ tree. This record should
go in the leaf page containing 50, 55, 60, andBBortunately this page is full. This means that
we must split the page as follows:

Left Leaf Page | Right Leaf Page

50 55 60 65 70

The middle key of 60 is placed in the index pagsvben 50 and 75.

The following table shows the B+ tree after theitoldl of 70.

Add Record with Key 70

Adding a record when both the leaf page and the irek page are full

As our last example, we're going toadd a recordaining a key value of 95
to our B+ tree. This record belongs in the pagdg¢aiomg 75, 80, 85, and 90.
Since this page is full we splitit.into two pages:

Left-Leaf Page | Right Leaf Page

75 80 8590 95

The middle key, 85, rises to the index page. Unfwately, the index page is also full, so we split
the index page:

Left Index Page | Right Index Page New Index Page

2550 75 85 60

The following table illustrates the addition of thezord containing 95 to the B+ tree.

Add Record with Key 95

158

159

Rotation

B+ trees can incorporate rotation to reduce thebmrrof page splits. A rotation occurs when a
leaf page is full, but one of its sibling pagesas full. Rather than splitting the leaf page, we
move a record to its sibling, adjusting the indiassecessary. Typically, the left sibling is
checked first (if it exists) and then the rightlsig.

As an example, consider the B+ tree before thetiaddof the record
containing a key of 70. As previously stated tieisard belongs in the leaf
node containing 50 55 60 65. Notice that this nedall, but its left sibling is
not.

Add Record with Key 28

Using rotation we shift the record with the lowksy to its sibling. Since this key appeared in
the index page we also modify the index page. Hve B+ tree appears in the following table.

[llustration of Ratation

Deleting Keys from a B+ tree

We must consider three scenarios when we deleteoad from a B+ tree. Each scenario causes
a different action in the delete algorithm. Thersges are:

Thedeletealgorithm for B+ Trees

Leaf Page @ Index Page
Below Fill Below Fill Action
Factor Factor

Delete the record from the leaf page. Arrange keygscending
NO NO order to fill void. If the key of the deleted redaxppears in the
index page, use the next key to replace it.

Combine the leaf page and its sibling. Changerntex

YES NG page to reflect the change.

1. Combine the leaf page and its sibling.

2. Adjust the index page to reflect the change.
YES YES 3. Combine the index page with its sibling.

Continue combining index pages until you reachgepa

160

with the correct fill factor or you reach the rqaige.

As our example, we consider the B+ tree after wied®5 as a key. As a refresher this tree is
printed in the following table.

Add Record with Key 95

Delete 70 from the B+ Tree
We begin by deleting the record with key 70 frora Bi tree. This record is in a leaf page
containing 60, 65 and 70. This page will contare@ords after the deletion. Since our fill factor

is 50% or (2 records) we simply delete 70 fromlda node. The following table shows the B+
tree after the deletion.

Delete Record with Key 70

Delete 25 from the B+ tree

Next, we delete the record containing 25 from theti@e. This record is found in the leaf node
containing 25, 28, and 30. The fill factor will B8% after the deletion; however, 25 appears in
the index page. Thus, when we delete 25 we mulaejit with 28 in the index page.

The following table shows the B+ tree after thigeten.

Delete Record with Key 25

161

Delete 60 from the B+ tree

As our last example, we're going to delete 60 ftbenB+ tree. This deletion is interesting for
several resasons:

1. The leaf page containing 60 (60 65) will be beltw till factor after the deletion. Thus,
we must combine leaf pages.

2. With recombined pages, the index page will be reduxy one key. Hence, it will also
fall below the fill factor. Thus, we must combim&lex pages.

3. Sixty appears as the only key in the root indexep&jpviously, it will be removed with
the deletion.

The following table shows the B+ tree after theetieh of 60. Notice thatthe tree contains a
single index page.

Delete Record with Key.60

Copyright, 1998, Susan Anderson-Freed

The Structure of B-Trees

Unlike a binary-tree, each node of a b-tree mayelavariable number of
keys and children. The keys are stored in non-desang order. Each key has
an associated child that is the root of a subtos¢aining all nodes with keys
less than oriequal to the key but greater thapitbeceding key. A node also
has an additional rightmost child that is the foota subtree containing all
keys greater than any keys in the node.

A'b-tree has a minumum number of allowable childmreach node known
as-theminimization factorlIf t is thisminimization factorevery node must
have at leadt- 1 keys. Under certain circumstances, the root ne@dowed
to violate this property by having fewer thianl keys. Every node may have
at most2t - 1 keys or, equivalenth2t children.

Since each node tends to have a large branchitay f@clarge number of
children), it is typically neccessary to traverskatively few nodes before
locating the desired key. If access to each nogeines a disk access, then a
b-tree will minimize the number of disk accessegineed. The minimzation
factor is usually chosen so that the total sizeawh node corresponds to a
multiple of the block size of the underlying stogatevice. This choice
simplifies and optimizes disk access. Consequeathytree is an ideal data
structure for situations where all data cannotdegn primary storage and

162

accesses to secondary storage are comparativetypgixp (or time
consuming).

Height of B-Trees

Forn greater than or equal to one, the height afi-iey b-tree T of height
with a minimum degreegreater than or equal to 2,

n+ 1
2

h < log,

For a proof of the above inequality, refer to Conpieeiserson, and Rivest pages 383-384.

The worst case height @(log n) Since the "branchiness" of a b-tree can be
large compared to many other balanced tree stemtthie base of the
logarithm tends to be large; therefore, the nunolbeiodes visited during a
search tends to be smaller than required by otBerstructures. Although this
does not affect the asymptotic worst case heigheds tend to have smaller
heights than other trees with the same asymptetghh

Operations on B-Trees

The algorithms for theearch create andinsertoperations are shown below.
Note that these algorithms are single pass; inratloeds, they do not traverse
back up the tree. Since b-trees strive to minindizk accesses and the nodes
are usually stored on disk, this single-pass ampreall reduce the number of
node visits and thus the number of disk accessegl& double-pass
approaches that move back up the tree to fix vaiatare possible.

Since-all.nodes are assumed to be stored in segostdaage (disk) rather

than primary storage (memory), all referencesgovan node be be preceeded
by aread operation denoted Disk-Read Similarly, once a node is modified
and it is no longer needed, it must be writtentolgecondary storage with a
write operation denoted Wyisk-Write The algorithms below assume that all
nodes referenced in parameters have already hadespondindisk-Read
operation. New nodes are created and assignedstaith theAllocate-Node
call. The implementation details of tBesk-Read Disk-Write andAllocate-
Nodefunctions are operating system and implementatependent.

163

B-Tree-Search(x, k)

i<-1
while i <= n[x] and k > keyx]
doi<-i+1

if i <= n[x] and k = key[x]
then return (x, i)
if leaf[x]
then return NIL
else Disk-Read{g])
return B-Tree-Searclkjtd, k)

The search operation on a b-tree is analogouséaeh on a binary tree.
Instead of choosing between a left and a rightdcdisl in a binary tree, a b-tree
search must make an n-way choice. The correct chdtosen by performing
a linear search of the values in the node. Aftedlifig the value greater than
or equal to the desired value, the child pointeh®oimmediate left of that
value is followed. If all values are less than diesired value, the rightmost
child pointer is followed. Of course, the search ba terminated as soon as
the desired node is found. Since the running tifrtBe@search operation
depends upon the height of the tiBelree-Searclis O(log n).

B-Tree-Create(T)

x <- Allocate-Node()
leaf[x] <- TRUE

n[x] <-0
Disk-Write(x)

root[T] <- x

TheB-Tree-Createperation creates an empty b-tree by allocatingvaroot
node that hasno keys and is a leaf node. Onlyoibtenode is permitted to
have these properties;.all other nodes must meatriteria outlined
previously. TheB-Tree-Createperation runs in time(1).

B-Tree-Split-Child(x, i, y)

z <-"Allocate-Node()
leaf[z] <- leafly]
niz]<-t-1
forj<-1tot-1
do keyfz] <- key«[y]
if not leaffy]
thenforj<-1tot
do (7] <- Gulyl
ny]<-t-1
forj<-n[x] + 1downtoi+1
do gu[x] <- ¢j[X]
G <-Z

164

for j <- n[x] downto i
do key[x] <- keyi[x]

key[x] <- keyly]

nix] <-n[x] +1

Disk-Write(y)

Disk-Write(z)

Disk-Write(x)

If is node becomes "too full,” it is necessary &fprm a split operation. The
SElit operation moves the median key of nadeto its pareny wherex is the
i" child ofy. A new nodez, is allocated, and all keys iright of the median
key are moved ta. The keys left of the median key remain in thgioal
nodex. The new nodez, becomes the child immediately to the right of the
median key that was moved to the paserand the original node, becomes
the child immediately to the left of the median kkst was moved into the

parenty.

The split operation transforms a full node wth 1 keys into two nodes with
t - 1 keys each. Note that one key is moved into themgarode. Th8-Tree-
Split-Child algorithm will run in timeO(t) wheret.is constant.

B-Tree-Insert(T, k)

r <- root[T]
ifnrj=2t-1
then s <- Allocate-Node()
root[T] <-s
leaf[s] <- FALSE
n[s] <-0
G<-r
B-Tree-Split-Child(s, 1, r)
B-Tree-Insert-Nonfull(s, k)
else B-Tree-Insert-Nonfull(r, k)

B-Tree-Insert-Nonfull(x, k)

i <-n[x]
if leaf[x]
then while i >= 1 and k < kg¥]
do key[x] <-'keyi[x]
i<=i-1
keya[X] <- k
nix] <-n[x] +1
Disk-Write(x)
else while i >= and k < kgy]
doi<-i-1
i<-i+1
Disk-Read(¢x])
if n[c[x]] = 2t-1
then B-Tree-Split-Child(x, i,[&])
if k > keyx]
theni<-i+1
B-Tree-Insert-Nonfull(kx], k)

165

To perform an insertion on a b-tree, the approentde for the key must be
located using an algorithm similiar B3 Tree-SearchNext, the key must be
inserted into the node. If the node is not fulbpto the insertion, no special
action is required; however, if the node is fulke hode must be split to make
room for the new key. Since splitting the node itssn moving one key to
the parent node, the parent node must not berfalhother split operation is
required. This process may repeat all the way updaoot and may require
splitting the root node. This approach requires passes. The first pass
locates the node where the key should be insefiedsecond pass performs
any required splits on the ancestor nodes.

Since each access to a node may correspond talhadisk access, itis
desirable to avoid the second pass by ensurindtibgiarent node. is never
full. To accomplish this, the presented algorittptits any full nodes
encountered while descending the tree. Althoughdapproach-may.result in
unecessary split operations, it guarantees thasdhent never needs to be
split and eliminates the need for a second pasbeaifree. Since a split runs in
linear time, it has little effect on ti@(t log n) running time oB-Tree-Insert

Splitting the root node is handled as a specia sasce a new root must be
created to contain the median key of the old rofiserve that a b-tree will
grow from the top.

B-Tree-Delete

Deletion of a key from a b-tree is possible; howespecial care must be
taken to ensure that the properties of a b-treenaiatained. Several cases
must be considered. If the deletion reduces thebeurof keys in a node
below the minimum degree-of the tree, this violatoust be corrected by
combining several'nodes-and possibly reducing #nghlh of the tree. If the
key has children, the children must be rearrangeda detailed discussion of
deleting from a b-tree, refer to Section 19.3, ga@f@b-397, of Cormen,
Leiserson, and Rivest or to another referencedliisedow.

166

Sample B-Tree

1 2 3 6 7 9 (11 12 15 17 22 36

Searching a B-Tree for Key 21

B-Tree: Minimlzatlon Factor t = 3, Minimum Degree = 2, Maxlmum Degree = 3

20
2 12 15 17 19 32 35 36 41 53
Searchi21)

Inserting Key 33 into a B-Tree (w/ Split)

167

Applications

Databases

A databasés a collection of data organized in a fashiort theilitates
updating, retrieving, and managing the data. Tha dan consist of anything,
including, but not limited to names, addressedupés, and numbers.
Databases are commonplace and are used everydagxdrople, an airline
reservation system might maintain a database ofad@ flights, customers,
and tickets issued. A teacher might maintain aldeta of student names and
grades.

Because computers excel at quickly and accuratalyipmlating, storing, and
retrieving data, databases are often maintainedrefecally using alatabase
management systefatabase management systems are essential camtpone
of many everyday business operations. Databaseigiotike Microsoft SOL
Server Sybase Adaptive SeryéBM DB2, andOracle serve as a foundation

for accounting systems, inventory systems, medeairdkeeping sytems,
airline reservation systems, and countless othportant aspects of modern
businesses.

It is not uncommon for a database to contain nm#iof records requiring
many gigabytes of storage. For examples, TELSTRAA@stralian
telecommunications company, maintains a custontiangpdatabase with 51
billion rows (yes, billion) and 4.2 terabytes otalan order for a database to
be useful and usable, it must support the desipedadions, such as retrieval
and storage, quickly. Because databases cannoatlypbe maintained
entirely in memory, b-trees are often used to indhexdata and to provide fast
access. For example, searching an unindexed amdtedslatabase
containingnkey values will have a worst case running time©gt); if the

same data is indexed with a b-tree, the same seartation will run inO(log
n)..To perform a search for a single key on a senefmillion keys
(1,000,000), a linear search will require at mqg800,000 comparisons. If the
same data is indexed with a b-tree of minimum de@@® 114 comparisons
will be required in the worst case. Clearly, inaexlarge amounts of data can
significantly improve search performance. Althowgher balanced tree
structures can be used, a b-tree also optimizely clisk accesses that are of
concern when dealing with large data sets.

168

Concurrent Access to B-Trees

Databases typically run in multiuser environmeniter@ many users can
concurrently perform operations on the databasértimately, this common
scenario introduces complications. For examplegimeaa database storing
bank account balances. Now assume that someonapédteo withdraw $40
from an account containing $60. First, the curtmiance is checked to ensure
sufficent funds. After funds are disbursed, theabegé of the account is
reduced. This approach works flawlessly until carent transactions are
considered. Suppose that another person simultalyeatiempts to withdraw
$30 from the same account. At the same time thewntdalance is checked
by the first person, the account balance is alstewed for the second person.
Since neither person is requesting more funds dn@rmcurrently available,
both requests are satisfied for a total of $70eitthe first person's
transaction, $20 should remain ($60 - $40), sothwe balance'is recorded as
$20. Next, the account balance after the secorgbp&rtransaction, $30 ($60
- $30), is recorded overwriting the $20 balancefddnnately, $70 have been
disbursed, but the account balance has only bemeaked by $30. Clearly,
this behavior is undesirable, and special precastinust be taken.

A b-tree suffers from similar problems in a'mulgugnvironment. If two or
more processes are manipulating the same treepassible for the tree to
become corrupt and result in data loss or errors.

The simplest solution is to serialize access taltta structure. In other
words, if another process is.using the tree, &kkoprocesses must wait.
Although this is feasible in‘'many cases, it carc@lan unecessary and costly
limit on performance because-many operations dgtaah be performed
concurrently without-riskLocking introduced by Gray and refined by many
others, provides a‘mechanism for controlling corentroperations on data
structures in order to prevent undesirable sidec&dfand to ensure
consistency. For a detailed discussion of this@hdr concurrency control
mechanisms, please refer to the references below.

169

Program 10:

Insertion into a AVL Tree and deletion from a AVL tree.\

template<typename Key,typename Elements>

class AVLTree :public Binary Search Tree<Key,Eletn®¥L Item<Key,Element>>{protected:

/llocal types

typedef AVLItem<Key,Element> Item;
item
typedef BinarysearchTree<Key,Element,ltem>BST,;
tree
typedef BST :: BTposition BTposition;
public:
typedef BST::position
\\...(insert AVLItem here)
protected:
int height(const BTposition& p) const {
p

if(T.isExternal(p))return O;

else return p.elment().height();

}

void setHeight(BTPosition p) {

p

int leftHeight = height(T.leftChild(p));

int rightHeight=height(T.rightChild(p));

int maxHeight =max(leftHeight,rightHeight);
p.element().setHeight(1+maxHeight);

}

bool is Balanced(const BTPosition& P) const {.
balanced?

if bf=height(T.leftchild(p))-height(T-rightchild(p)
return((-1<=bf)&&(bf<=1));

BTPosition tallGrandchild(const BTPosition& p)const

tallest grandchild

/l...(insert rebalance() here)

public:

AVLTree() : BST() { }

void insertltem(const key& k,const Element & e) {
llinsert(key,element)

BTposition p =inserter(k ,e);

setHeight(p);

rebalance(p);

}

void removeElement(const Key& k)

key

throw(NonexistentElementException) {
BTposition p = finder(k,T.root());
if(p.isNull())

/I a treede
//base search
//a trgesition
/Ipublic types

/Iposition

//local utilities
//deeight of

IIset heigtit

Illisp

/lget

/Iconstructor

/linsert iade tree
/lcompute its height
/Irebalance if needed

[Iremo\géng

/lfind ibase tree
/Inot found?

throw NonexistentElementException("Remove noneristééement”);

170

BTPosition r = remover(p);
rebalance(r);

h

11> AVL
#include<iostream.h>
#include<conio.h>
#include<process.h>
class AVL
{ .
private:
struct node
{
int data;
int height;
struct node *left;
struct node *right;
h
struct node *p;
public:
AVL()
{
p=NULL;
}
void insert(int,struct node &);
void del(int,struct node &);
void find(int,struct node &);
// void preorder(struct node);
/Ivoid inorder(struct node);
/Ivoid postorder(struct node);
/Ivoid count(struct node);
int AVLheight(struct node);
int max(int,int);
struct node single_left_rotation(struct node &);
struct node single_right_rotation(struct node &)
structnode double_left_rotation(struct node &);
struct node double_ right_rotation(struct node &
2
int AVL::max(int a,int b)

{

if(a>b)
return a;
else
return b;

}
int AVL::AVLheight(struct node p)

{
Int t;
if(p==NULL)
{
171

/Iremove it
/Irebalance if needed

return-1;

}

else

{

t=p->height;

return t;

}

}

void AVL::insert(int e,struct node &)
{

if(p==NULL)

{

p=new node;

p->data=e;

p->height=0;

p->left=NULL;

p->right=NULL;

}

else

{

if(p->data>e)

insert(e,p->left);
if((AVLheight(p->left)-AVLheight(p->right)==2|R))
{

if(p->left->data>e)
p=singlerotationleft(p);

else

p=doublerotationleft(p);

}

else if(p->data<e)
insert(e,p->right);
if((AVLheight(p->left)-(AVLheight(p->right)==23}2))

if(p->right->data<e)

p=singlerotationright(p);

else
p=doublerotationright(p);

}

else

{

cout<<"\n duplicate ele";
}
}
int m,n,d;

m=AVLheight(p->left);
n=AVLheight(p->right);
d=max(m,n);
p->height=d+1;
}
172

void AVL::find(int e,struct node &p)
{

if(p==NULL)

cout<<"\n ele is not found";

else if(p->data>e)

find(e,p->left);

else if(p->data<e)

find(e,p->right);

else

cout<<"\n ele is found";

}

void AVL.:.del(int e,struct node &p)
{

if(p==NULL)

{

cout<<"\n ele not found";
}

else if(p->data>e)
del(e,p->left);

else if(p->data<e)
find(e,p->right);

else if((p->left)==NULL&&(p->right)==NULL)
{

temp=p;

p=NULL;

delete temp;

cout<<"\n ele is deleted";
}

else if(p->left==NULL)

{

temp=p;

p=p->right;

delete temp;

cout<<"\n ele deleted";

}

else if(r->right==NULL)

{

temp=p;

p=p->left;

delete temp;

cout<<"\n ele delete";

}

else
p->data=minright(p->right);
}

struct node AVL::single leftrotation(structnode &pl

{
173

struct node *p2;

p2=pl->left;

pl->left=p2->right;

p2->right=p1;
pl->height=max(AVLheight(p1->left),AVLheight(p->rg))+1;
p2->height=max(AVLheight(p2->left),p2->height))+1;
return p2;

}

struct node AVL::single right rotation(struct no&lpl)

{

struct node *p2;

p2=p1l->right;

pl->right=p2->left;

p2->left=p1,
pl->height=max(AVLheight(pl->left),AVLheight(p1-¥t))+1,;
p2->height=max(p2->height,AVLheight(p2->right))+1;

return p2;

}

struct node AVL::double rotationleft(struct node Bp
{

pl->left=single rotation right(p1->left);

return single rotation right left(p1);

}

struct node AVL::double rotationright(struct node®
{

pl->left=single rotation left(p1->right);

return single rotation right right(p1);

}

void main()

{

AVL al;

int ch,ele;

do

{

cout<<"\nl.insert:";
cout<<"\n2.del:";
cout<<"\n3.find:";
cout<<"\n4.AVLheight:";
cout<<"\n5.max:";
cout<<"\n6.single left rotation:";
cout<<"\n7.single right rotation:";
cout<<"\n8.double left rotation:";
cout<<"\n9.double right rotation:";
cout<<"\n10.exit:";

174

cout<<"\n enter choice:";
cin>>ch;
switch(ch)
{
case 1: cout<<"\n element to insert:";
cin>>ele;
al.insert(ele,p);
break:
case 2: cout<<"\n element to delete:";
cin>>ele;
al.delsert(ele,p);
break:
case 3: cout<<"\n element to find:";
cin>>ele;
al.find(ele,p);
break:
case 4. al.AVLheight(p);
break:
case 5. al.max(a,b);
break:
case 6: al.single left rotation(p);
break:
case 7. al.single right rotation(p);
break:
case 8: al.double left rotation(p);
break:
case 9: al.double right rotation(p);
break:
case 10: al.exit(0);
break:
}

twhile(ch<=10);

getch();
}

175

Program 11:

Implement Kruskals algorithm to generate a minimumspanning tree.

More Graph Problems

ICycle Detection Algorithms

Many algorithms rely on detecting cycles in grapMany cycle detection algorithms are “brute
force” algorithms and are quite inefficient. Howeyvthere are several algorithms which are
quite efficient. One such algorithm is based upodepth-first traversal of the graph. For
undirected graphs, a single line needs to be adaeatie-algorithm we presented earlier for
depth-first traversal. This algorithm as well las tmodified” version are shown below:

Original Algorithm:
DFS(v)
numv) = i++;
for all verticesu adjacent tov
if numu)is O
attach edgduv) to edges;
DFS(u);

depthFirstSearch()

for all verticesv
numyv) =0;

edges null;

i=1;

while there is a vertex such that nuiv) is O
DFS(v);

outputedges;

Modified Algorithm:

cycleDetection (v)
numv) = i++;
for all verticesu adjacent tov
if num(u)is 0
attach edgduv) to edges;
cycleDetection(u);
elsecycle detected

176

For digraphs, the situation is a bit more compédasince there may be edges between different
spanning subtrees, callsitle edges An edge (a back edge) indicates a cycle if ingawo
vertices already included in the same spanningreelbt To consider only this case, a number
higher than any number generated in subsequerth&sais assigned to a vertex being currently
visited after all its descendants have also besited. In this way, if a vertex is about to be
joined by an edge with a vertex having a lower nemkhen a cycle has been detected. The
algorithm for cycle detection using this technigua digraph is shown below:
digraphCycleDetection (v)
numv) = i++;
for all verticesu adjacent tov
if numu)isO
attach edgg@uv) to edges;
digraphCycleDetection(u);
else ifnum(u) is notoo
cycle is detected

num(v) = oo;

Kruskal’s Algorithm to Generate a Minimum Spannihge

We have already seen Prim’s algorithm for genega@nminimum spanning tree. Prim’s
technique, although we presented it in tabular fdsasically creates a single tree and expands
the tree from the root as edges are consideredskal's algorithm takes a different approach in
which a set of trees (a forest) is condensed toglestree.

In Kruskal's method, all edges are ordered by weigimd then each edge in this ordered
sequence is checked to see whether.it. can be evedics part of the tree which is under
construction. The edge is added to the tree dmyp icycle arises after its inclusion. Kruskal's
algorithm is quite simple and is shown below:

KruskalAlgorithm (veighted connected undirectgchph)
tree =null;
edges ssequence of all edgesgraphsorted by weight
for (I=1; 1< CED andtred] < [V [}1; i++)
if & fromedgesdoes not form a cycle with edgedriee
adde to tree;
The complexity. of this algorithm is determined by itomplexity of the sorting algorithm which
is applied,~which for an efficient sorting algonths O(E[Jog, [E[). It also depends on the
complexity of the algorithm used for the cycle a#tan.

To illustrate the technique of Kruskal's algorithoonsider the following example:

O e €D
| e@

177
E

TN

The ordering of the weighted edges is:

(9,f) =3, (a,c) =5, (a,b) =6, (d,f) =7, (e,gB=(c,b) =9, (c,f) = 12, (b,e)= 13, (d,e) = &bd

(c,d) = 16

178

Iteration 1: A tree is formed from the minimum weight edgd)(g,

¢

Iteration 2: A second tree is formed from the minimum weigtge (a,c). Notice that this
tree is not connected to the first tree since thaye no vertex in common.

¢

Iteration 3: The next minimum edge (a,b) is added to the fotbss time to an existing tree
since there is a common vertexan

o

Iteration 4: The next edge added to the tree (forest) is). (d,f

&

teration 5: The next edge added is, (e,q).

179

Iteration 6: This step will attempt to add the edge (c,b)thig would induce a cycle so the edge
is not added to the tree.

lteration 7: This step will add the edge (c,f).

(D—()
© (o)

Iteration 8: This step will attempt to add the edge (b,e)tbigt would induce a cycle so the edge
is not added to the tree.

Iteration 9: This step will attempt to add the edge (d,e)tbigt would induce a cycle so the edge
is not added to the tree.

Iteration 10: This step-will attempt to add the edge (c,d) thig would induce a cycle so the
edge is not added to'the tree.

Thus the final minimum spanning tree is shown ateation #7 has completed.
For practice, you should run Prim’s algorithm oa thitial graph for this example. Does Prim’s

algorithm produce the same minimum spanning trgé&nswer is on the last page of this set of
notes.}

All-to-All Shortest Path Problem

Dijkstra’s and Ford’s algorithms solve the shorfesth problem from one specified vertex to all

other vertices in the graph. This type of problenoften called the One-to-All Shortest Path

problem. The problem of finding all shortest pditiasn any vertex to any other vertex (the All-

to-All Shortest Path problem) seems to be a momepticated problem. However, an algorithm

developed by Stephen Warshall and implemented beRdé&loyd and P.Z. Ingerman solves this
180

problem in a surprisingly simple way provided thia adjacency matrix indicates the weight of
each edge in the graph. The technique works whétleegraph is undirected or directed and the
graph may include negative weights. The algorithishown below:

WFlalgorithm (natrix weights)

fori=1to VO
forj=1tolV[O
for k = 1 tolVO

if weight[j][k] > weight[j][i] + weight[i][K]
weight[j][K] = weight[j][i] + weight[i][K];

The outermost loop handles the vertices which neagrba path between the vertex with inglex
and the vertex with indelk For example, in the first iteration, whiea 1, all pathss...\...\ are
considered, and if there is currently no path frgro v andvi.is reachable fromy;, the path is
established, with its weight equal po=weight(path(y..:V)) + weight(path(y...\)), or the
current weight of this pathweight(path(y...\)).«is. changed top if p is less than
weight(path(y...,\)). To illustrate the WFI algorithm consider theldaling example:

A(1) | B(2) | C(3) | D(4) | E(5)

A1)l O 2 o | -4 | o
B(2)|] o 0 | -2 1 3
C)| « 00 0) 1
DA)]| © | ©o | o [0 4
EG)| o« 0 o0 0 0

Since the graph in the example is a directed gnaptice that the matrix is a diagonal matrix. In
this case only the cells in the upper right sidéhef main diagonal contain data which describes
the graph. The cells in the lower left side of thegonal all contain infinity. The cells alongeth
main diagonal are initialized to 0. After examuinow the WFI algorithm operates, we’ll come
back to explore the adjacency matrix a bit moréhase turns out to be a very useful purpose to
representing the graph in this fashion.

181

182

Iteration 1 (variablé refers to verteX)

The test which is performed in the algorithm is:igid{jJ[k] > weight[j][i] + weight][i][K].
Vertex A has no incident edges (for allandk values there are no values for weight[j][1] or
weight[1][k]) so no changes will occur to the matduring the first iteration of the algorithm.
SinceA has no incident edges, it cannot be along thelpetiieen any two verticgsandk.

A(l) | BQ2) | C(3)| D(4) | E(5) .,
AD|l 0| 2| o | -4 a \
B(2) 0| 2| 1
C@3) 00 0 0
to] o o o e @ O

E(5)

O|lNIFR|W

88|88

Iteration 2 (variablé refers to verteB)

During this iteration,i is 2 so the test becomes: weight[j][k] > weighf]] + weight[2][k].
Vertex B has incident 1 edge; the following tests will efprmed: weight[j][k] > weight[j][2]

+ weight[2][k]. SinceB has only one incident edge (frof) it can only be along a path which
begins atA (sinceA has no incident edges). Shorter paths foundigitiration are shown in
red.

weight[1][1] > weight[1][2] + weight[2][1]- noO, @ changes
weight[1][2] > weight[1][2] + weight[2][2] — no, nahanges
weight[1][3] > weight[1][2] + weight[2][3] = yese > 0, set weight[1][3] to O
weight[1][4] > weight[1][2] + weight[2][4] — no, nahanges
weight[1][5] > weight[1][2] + weight[2][5] — yese > 5, set weight[1][5] to 5

A B D E
A 0 2 0| -4 5
B 00 0 -2 1 3
C 00 00 0 00 1
D 00 00 00 0 4
E 00 00 00 00 0

183

Iteration 3 (variablé refers to vertexC)

During this iteration,i is 3 so the test becomes: weight[j][k] > weigh]] + weight[3][k].
Vertex C has 1 incident edge; the following tests will fprmed: weight[j][k] > weight][j][3]
+ weight[3][k]. Shorter paths found in this itecat are shown in blue.

weight[1][1] > weight[1][3] + weight[3][1] — no, nahanges

weight[1][2] > weight[1][3] + weight[3][2] — no, nahanges

weight[1][3] > weight[1][3] + weight[3][3] — no, nahanges

weight[1][4] > weight[1][3] + weight[3][4] — no, nahanges

weight[1][5] > weight[1][3] + weight[3][5] — yes, 5 1, set weight[1,5] to 1
weight[2][1] > weight[2][3] + weight[3][1] — no, nahanges

weight[2][2] > weight[2][3] + weight[3][2] — no, nahanges

weight[2][3] > weight[2][3] + weight[3][3] — no, nahanges

weight[2][4] > weight[2][3] + weight[3][4] — no, nahanges

weight[2][5] > weight[2][3] + weight[3][5] — yes, & -1, set weight[3][5] to-1

A B C D E
Alo] 2] o0of-a]1 03
B 00 0 -2 1 -1 \
C 0 0 0 00 1 °
D 0 0 0 0 4
E 00 00 00 o)

NG 2 O

Iteration 4 (variablé refers to verteP)

During this iteration,i is 4 so the test becomes: weight[j][k] > weighd]] + weight[4][k].
VertexD has 2 incident edges; the following tests willggeformed: weight[j][k] > weight[j][4]
+ weight[4][k]. Shorter paths found in this itacat are shown in purple.

weight[1][1] > weight[1][4] + weight[4][1] - , nono changes
weight[1][2] > weight[1][4] + weight[4][2] — no, nthanges
weight[1][3] > weight[1][4] + weight[4][3] — no, nahanges

184

weight[1][4] > weight[1][4] + weight[4][4] — no, nahanges
weight[1][5] > weight[1][4] + weight[4][5] — yes, 30, set weight[1][5] to O
weight[2][1] > weight[2][4] + weight[4][1] - , nono changes
weight[2][2] > weight[2][4] + weight[4][2] — no, nchanges
weight[2][3] > weight[2][4] + weight[4][3] — no, nahanges
weight[2][4] > weight[2][4] + weight[4][4] — no, nahanges
weight[2][5] > weight[2][4] + weight[4][5] — no, nahanges
weight[3][1] > weight[3][4] + weight[4][1] - , nono changes
weight[3][2] > weight[3][4] + weight[4][2] — no, nthanges
weight[3][3] > weight[3][4] + weight[4][3] — no, nahanges
weight[3][4] > weight[3][4] + weight[4][4] — no, nahanges
weight[3][5] > weight[3][4] + weight[4][5] — no, nahanges
weight[4][1] > weight[4][4] + weight[4][1] - , nono changes
weight[4][2] > weight[4][4] + weight[4][2] — no, nchanges
weight[4][3] > weight[4][4] + weight[4][3] — no, nahanges
weight[4][4] > weight[4][4] + weight[4][4] — no, nahanges
weight[4][5] > weight[4][4] + weight[4][5] — no, nahanges
weight[5][1] > weight[5][4] + weight[4][1] - , nono changes
weight[5][2] > weight[5][4] + weight[4][2] — no, nthanges
weight[5][3] > weight[5][4] + weight[4][3] — no, nahanges

weight[5][4] > weight[5][4] + weight[4][4] — no, nehanges
weight[5][5] > weight[5][4] + weight[4][5]— no, nahanges

A B D
A 0 2 0 | 4 0
B 0 0 -2 1 -1
C 0 0 0 0 1
D 0, | oo 0 0 4
E 00 00 00 0 0

185

Iteration 5 (variablé refers to vertek)

As with the first iteration of the algorithm, thast iteration will cause no changes to the
adjacency matrix because vertéxhas no edges which emanate from it. Therefore, it
cannot be along the path between any other twacesrin the graph. So our work is
done and the adjacency matrix contains the valtitsecshortest paths between any two
arbitrary vertices in the graph.

The WFlalgorithm for solving the all-to-all shortgsath problems also allows for the
detection of cycles in the graph. To achieve thiklitional functionality for the
algorithm, the weights along the main diagonal nmestinitialized toc rather than 0.
Through the course of execution of the algorithmaoparticular graph, if any of the
values along the main diagonal are changed, thghgsal contain a cycle. Futher, if one
of the initial values ofo between two vertices in the adjacency matrix isamanged to a
finite value during the execution of the algoritiihis is an indication'that a vertex is
unreachable from another.

vertex | visited minimum vertex causing
weight change to min weight
A F 0 0
B F o 0
C F 0 0
D F oo 0
E E oo 0
F F o 0
G F o 0

Initial table

186

After first

vertex | visited minir_num vertex ca_using_
weight change to min weight
AT T 0
B F 6 A
C F 5 A
D F co 0
E F co 0
F F 00 0
G F 00 0
iteration — active vertex was A
vertex | visited minir_num vertex ca_using_
weight change to min weight
A T 0 0
B F 6 A
D F 16 C
E F 0 0
F F 12 C
G F 00 0

After second iteration — active vertex was C

vertex

visited

minimum
weight

vertex causing
change to min weight

0

0

6

5

16

13

MM M|

12

G)'nrnUOIJ>

F

[¢¢]

OSlnlm|lo|>|>

After third iteration — active vertex was B

187

vertex

visited

minimum
weight

vertex causing
change to min weight

0

6

5

7

A
B
C
D
E
G F

13

—[m|n|-d|H

12

3

MO|lm M X>| > o

After fourth iteration — active

vertex was F

vertex | visited minir_num vertex ca_using_
weight change to min weight

A T 0 0
B T 6 A
C T 5 A
D F 7 F
E F 8 G
F T 12 C

T 3 F

After fifth iteration — active vertex was G

A T 0 0
B T 6 A
C T 5 A
E F 8 G
F T 12 C
G T 3 F

After sixth iteration — active vertex was D

188

vertex | visited minimum vertex ca'using.
weight change to min weight
A T 0 0
B T 6 A
C T 5 A
D T 7 =
E F 38 G
F T 12 C
G T 3 F

After seventh and final iteration — active vertexs E

The minimum spanning tree constructed by Prim’srillgm is shown below:

® @
AR

The minimum spanning tree constructed by Kruskat®rithm:

(D—()
O (o)

189

Yes, both algorithms generate the same minimumrspgriree. Reason... this tree has
only one minimum spanning tree!
void graph : : kruskal()

{

[*1*/
[*2*/
1*3*/

4/

[*5%/
1*6*/
1*7*

1*8%/

1*9*/

1*10*/

int edgesAccepted,;
disjSet s (NUM_VERTICES);
priorityQueue h(NUM_EDGES);
vertex u, v;
settype uset, vset;
Edge €;
h= readGraphintoHeapArray();
h.buildHeap();
edgesAccepted =0;

while(edgesAccepted < NUM_VERTICES -1)

h.deleteMin(e); /ledge e = (u,v)
uset = s.find(u);
vst = s.find(v);
if(uset I=vset)
{
/[Accept the edge
edgesAccepted++;

s.unionSets(uset, vset);

1

190

12. Program to implement Hashing.(Linear Probing).

#include<iostream.h>
#include<conio.h>
#include<process.h>

class hash
{
private:
int *a;
int div;
public:
hash();
void insert(int);
void delet(int);
void disp();
int find(int);
int full();

hash::hash()

{
int i;
clrscr();

cout<<"\n enter the devisor:";

cin>>div;

a=new int[div];
for(i=0;i<div;i++)
ali]=-1;

int hash::full()

for(int i=0;i<div;i++)
{
if(afi]==-1)return O;
}

return 1;

}

void hash::disp()

{
inti;
for(i=0;i<div;i++)

{

191

}

if(afi]==-1)
{

}

else

{

cout<<ali]<<endl;

}

void hash::insert(int x)

{

int i,j,k;
i=find(x);
if(this->full())
{

cout<<"Hash table is full,we cannot insert";
return;

}

else if(i>=0)

{

cout<<"\n It is a duplicate element\n";
return;

}

else
{
k=x%div;
for(j=0;j<div;j++)
{
if(a[k]==-1)

{

a[k]=x;

cout<<"Element inserted"<<endl;
return;

}

else

{

if(k==(div-1))
k=0;
else
k++;

}

192

}
void hash::delet(int x)
{ . .
inti;
i=find(x);
if(i==-1)
{
cout<<"\nElement not found\n";
return;
}
else
{
ali]=-1;
cout<<"Element deleted";
}
}
int hash::find(int x)
t
inti,j;
iI=x%div;
for(j=0;j<div;j++)
{
if(afi]==x)
return i;
else
{
if(i==(div-1))i=0;
else i++;
}
}
return -1,
}
void main()
{
hash h;

193

int ch,ele,y;
clrscr();
do
{
cout<<"\nl.insert:";
cout<<"\n2.del:";
cout<<"\n3.find:";
cout<<"\n4.disp:";
cout<<"\n5.exit:";
cout<<"\nEnter the choice:";
cin>>ch;
switch(ch)
{
case 1:cout<<"\nEnter the element:";
cin>>ele;
h.insert(ele);
break;
case 2:cout<<"\nEnter the element to delete:";
cin>>ele;
h.delet(ele);
break;
case 3:cout<<"\nEnter the element to find:";
cin>>ele;
y=h.find(ele);
if(y==-1)
{

cout<<"Element not found"<<endl;

}

else

{

cout<<"Element found at"<<y+1<<"Position'erdl;

}

break;

case 4. cout<<"\nThe elements are:";
h.disp();
break;

case 5:exit(0);
break;

}
twhile(ch<=5);

getch();
}

194

VIVA QUESTIONS

What is C++7?

Released in 1985, C++ is an object-oriented programming laaguegted by Bjarne Stroustrup.
C++ maintains almost all aspects of the C language, whildigimg memory management and
adding several features - including a new datatype known as &ydassill learn more about these
later) - to allow object-oriented programming. C++ maint#iesfeatures of C which allowed for low-
level memory access but also gives the programmer new taiapgbfy memory management.

C++ used for:

C++ is a powerful general-purpose programming language. heased to create small programs or
large applications. It can be used to make CGl scripts or @nstf DOS programs. C++ allows you
to create programs to do almost anything you need to daréhtor of C++, Bjarne, Stroustrup, has
put together a partial list of applications written in C++.

How do you find out if a linked-list has an end? (k. the list is not a cycle)

You can find out by using 2 pointers. One of them goesdes each time. The
second one goes at 1 nodes each time. If there is a cycle, ttimbgees 2
nodes each time will eventually meet the one that goes sldwieat is the case,
then you will know the linked-list is a cycle.

What is the difference between realloc() and free?)

The free subroutine frees a block of memory previously allodatede malloc
subroutine. Undefined results occur if the Pointer parametert ia valid
pointer. If the Pointer parameter is a null value, no actidiroa¢ur. The realloc
subroutine changes the size of the block of memory pointey tite Pointer
parameter to the number of bytes specified by the Size parametetanng a
new pointer to the block. The pointer specified by the Bojparameter must
have been created with the malloc, calloc, or realloc subroutinesabden
deallocated with the free or realloc subroutines. Undefinedtsestdur if the
Pointer.parameter is not a valid pointer.

What is:function overloading and operator overloadng?

Function overloading: C++ enables several functions of the same to be
defined, as long as these functions have different sets of parar(etleast as
far as their types are concerned). This capability is called &umotierloading.
When an overloaded function is called, the C++ compiler seleetsroper
function by examining the number, types and order of thenazgts in the call.
Function overloading is commonly used to create several fmsatibthe same
name that perform similar tasks but on different data types.

Operator overloading allows existing C++ operators to beiresteto that they
work on objects of user-defined classes. Overloaded operatagéaetic sugar
for equivalent function calls. They form a pleasant facade tlesniicadd
anything fundamental to the language (but they can improvesiaddability

195

and reduce maintenance costs).

What is data structure?

A data structure is a way of organizing data tlwaisiders not only the items stored,
but also their relationship to each other. Advakmawledge about the relationship
between data items allows designing of efficiegbathms for the manipulation of
data.

List out the areas in which data structures are apfied extensively?
Compiler Design, Operating System, Database ManageB8ystem, Statistical
analysis package, Numerical Analysis, Graphicsifigidl Intelligence, Simulation

If you are using C language to implement the hetegeneous linked list, what
pointer type will you use?

The heterogeneous linked list contains differeta dgpes in its nodes and we need a
link, pointer to connect them. It is not possildause ordinary pointersfor this: So
we go for void pointer. Void pointer is capablestdring pointer to any type as itis a
generic pointer type.

What is the data structures used to perform recursin?

Stack. Because of its LIFO (Last In First Out) prap it remembers its caller, so
knows whom to return when the function has to ret®ecursion makes use of
system stack for storing the return addresseseofuiction calls. Every recursive
function has its equivalent iterative (non-recueifunction. Even when such
equivalent iterative procedures are written, exipéitack is to be used.

What are the methods available in storing sequentidiles ?
Straight merging, Natural merging, Polyphase doidtribution of Initial runs.

List out few of the Application of tree data-structure?
The manipulation of Arithmetic expression, Symbable construction, Syntax
analysis.

In RDBMS, what is the efficient data structure ugethe internal storage
representation?

B+ tree. Because in B+ tree, all the data is storég in leaf nodes, that makes
searching-easier. This corresponds to the rechedshall be stored in leaf nodes.

What is a spanning Tree?

A.spanning tree is a tree associated with a netwAlfithe nodes of the graph appear
on the tree once. A minimum spanning tree is arspgrtree organized so that the
total edge weight between nodes is minimized.

what.is the difference b/w abstract and interface?
Abstract can,t support multiple inheritence.
Interface can suppport the multiple inheritence.

Abstract have accesbulity modifiers.

Interface have no accesbulity modifiers

196

how memory store byte

byte mean binary digit for 8 digits .
it meant 1 byte store 8 bits .

1bit =1024kb
HOW TO SWAP TWO NOS IN ONE STEP?
main()
{
int a,b,c;

printf("enter two no's :");

scanf("%d%d",&a,&b);

c=a’=b"=a"=b;

printf("%d",c);

}

What is the Advantage of Interface over the Inheriance in
OOPS?

Provides flexibility in implementing the operatiofus

the derived classes.

2. Avoid conflicts when more than one interfaces ar
derived in a class.
write a c++ program to find maximum of two numbersusing

inline functions

#include<iostream>
using namespace std;
int main()
t
int c;
c=max(5,4); /Iwill display 5
cout<<c<<endl;
return O;

}

inline int max(int a, int b)

return (a>b)? a:b;

}

197

What is the difference between declaration and defition?

The declaration tells the compiler that at some later point avetplpresent the
definition of this declaration.

E.g.: void stars () //function declaration

The definition contains the actual implementation.

E.g.: void stars () // declarator

{

for(int j=10; j > =0; j--) //function body

cout << ¥,

cout << endl; }

What are the advantages of inheritance?
It permits code reusability. Reusability saves time in @nogdevelopment. It

encourages the reuse of proven and debugged high-quality sftiuas
reducing problem after a system becomes functional.

How do you write a function that can reverse a linkdist?

void reverselist(void)

if(head==0)

return;
if(head->next==0)
return;
if(head->next==tail)
{

head->next = 0;
tail->next = head;

}

else

{

node* pre = head;

node* cur = head->next;
node* curnext = cur->next;
head->next = 0;

cur-> next = head;

for(; curnext!=0;)

cur->next = pre;
pre.= cur,

cur = curnext;
curnext = curnext->next;

}

curnext->next = cur;

}
}

198

What do you mean by inline function?

The idea behind inline functions is to insert the code of act&linction at the
point where the function is called. If done carefully, this icaprove the
application's performance in exchange for increased compile timeoanithly
(but not always) an increase in the size of the generated binaryaesu

Write a program that ask for user input from 5 to 9 then calculate
the average

#include "iostream.h"

int main() {

int MAX = 4;

int total = O;

int average;

int numb;

for (int i=0; i<MAX; i++) {

cout << "Please enter your input between 5 and 9: ";
cin >> numb;

while (numb<5 || numb>9) {

cout << "Invalid input, please re-enter: ";

cin >> numb;

}

total = total + numb;
}

average = total/MAX;
cout << "The average number is: << average << "\n";
return O;

}

Write a short code using C++ to print out all odd umber from 1 to 100 using a
for loop

for(unsigned inti.=1;i<=100; i++)

if(i & 0x00000001)

cout << i << \"\"

What is‘public, protected, private?
Public, protected and private are three access specifier in C++.
Public'data members and member functions are accessible outsithsthe
Protected data members and member functions are only availalgeved
classes.
Private data members and member functions can’t be accessed tgsidess.
However there is an exception can be using friend classes.
Write a function that swaps the values of two integers, ustfigs the
argument type.
void swap(int* a, int*b) {
int t;

= *a;
*q = *b;
*h=t;

}

Tell how to check whether a linked list is circular
Create two pointers, each set to the start of the list. Updateas follows:

199

while (pointerl) {

pointerl = pointerl->next;

pointer2 = pointer2->next; if (pointer2) pointer2=poitemext;
if (pointerl == pointer2) {

print (\"circular\n\");

}
}

OK, why does this work?

If a list is circular, at some point pointer2 will wrap anduand be either at the
item just before pointerl, or the item before that. Eitheey,w'’s either/1 or 2
jumps until they meet.

What is virtual constructors/destructors?

Answerl

Virtual destructors:

If an object (with a non-virtual destructor) is destroyedieitly by applying the
delete operator to a base-class pointer to the abject, the bhasetebtructor
function (matching the pointer type) is called‘on the object.

There is a simple solution to this problem-declare a vibdasé-class destructor.
This makes all derived-class destructors virtual even thdweghdon't have the
same name as the base-class destructor. Now, if the objeethiretharchy is
destroyed explicitly by applying the delete operator to a bass-pointer to a
derived-class object, the destructor for the appropriate claaied. Virtual
constructor: Constructors cannot be virtual. Declaring atoactor as a virtual
function is a syntax error,

Answer2

Virtual destructors: If an object (with a non-virtual destau) is destroyed
explicitly by applying.the delete operator to a base-classgydimthe object, the
base-class destructor function (matching the pointer tymalled on the object.
There is a simple solution to this problem — declare a vibasé-class
destructor. This'makes all derived-class destructors vieiteal though they
don’t have:the same name as the base-class destructor. Neolifjdiet in the
hierarchy is destroyed explicitly by applying the delete opetatarbase-class
pointer to a derived-class object, the destructor for the apat®glass is called.

Virtual constructor: Constructors cannot be virtual. Declaring a constructor as
a virtual function is a syntax error. Does c++ supprt multilevel and multiple
inheritance?

Yes.

What are the advantages of inheritance?

« It permits code reusability.

* Reusability saves time in program development.

* It encourages the reuse of proven and debuggedijiglity softwarethus
reducing problem after a system becomes functional.

What is the difference between declaration and defition?
The declaration tells the compiler that at some later point avetplpresent the

200

definition of this declaration.

E.g.: void stars () //function declaration

The definition contains the actual implementation.
E.g.: void stars () // declarator

{

for(int j=10; j>=0; j--) //function body

cout<<™",

cout<<endl; }

What is RTTI?

Runtime type identification (RTTI) lets you find the dynartype of an object
when you have only a pointer or a reference to the base typéishe official
way in standard C++ to discover the type of an object andrteert the‘type of
a pointer or reference (that is, dynamic typing). The need cammepiractical
experience with C++. RTTI replaces many Interview Questionsmddoown
versions with a solid, consistent approach.

What is encapsulation?
Packaging an object’s variables within its methods is calledosatzion.

Explain term POLIMORPHISM and give an example usingeg. SHAPE object:
If | have a base clasSHAPE, how would | define DRAW methods for two
objects CIRCLE and SQUARE

Answerl

POLYMORPHISM : A phenomenon which enables an object to rédetahtly
to the saméunction call

in C++ it is attained by using a keyword virtual

Example
public class SHAPE

{

public virtual void SHAPE::DRAW()=0;

}

Note herethe function DRAW() is pure virtual which medmesdub classes
must implement the DRAW() method and SHAPE cannot be iatdti

public class CIRCLE::public SHAPE

{
public void CIRCLE::DRAW()

{

/l TODO drawing circle

}

}
public class SQUARE::public SHAPE

{
public void SQUARE::DRAW()

{

// TODO drawing square

}
}

201

now from the user class the calls would be like
globally
SHAPE *newShape;

When user action is to draw
public void MENU::OnClickDrawCircle(){
newShape = new CIRCLE();

}

public void MENU::OnClickDrawCircle(){
newShape = new SQUARE();

}

the when user actually draws
public void CANVAS::OnMouseOperations(){
newShape->DRAW();

}

Answer2
class SHAPE{
public virtual Draw() = O; //abstract class/with a pure almethod

h

class CIRCLE{

publicintr;

public virtual Draw() { this->drawCircle(0,0,r); }
%

class SQURE
public int a;
public virtual Draw() { this->drawRectangular(0,0,a,a); }

h

Each ebject is driven down from SHAPE implementing Draw(cfion in its
own‘way.

What is an object?
Object is asoftware bundl®f variables and related methods. Objects have state
and behavior.

How can you tell what shell you are running on UNIXsystem?

You can do the Echo $RANDOM. It will return a undefinedafale if you are
from the C-Shell, just a return prompt if you are from Bourne shell, and a 5
digit random numbers if you are from the Korn shell. ¥ould also do a ps -
and look for the shell with the highest PID.

What do you mean by inheritance?

Inheritance is the process of creating new classes, called derivexbs clfass
existing classes or base classes. ddréved clas#nherits all the capabilities of
the base class, but can add embellishments and refinemeistewhi

202

Describe PRIVATE, PROTECTED and PUBLIC - the differences
and give examples.

class Point2D{

int x; inty;

public int color;
protected bool pinned;
public Point2D() : x(0) , y(0) {} //default (no arguméronstructor

h
Point2D MyPoint;

You cannot directly access private data members when they are declared
(implicitly) private:

MyPoint.x = 5; //[Compilerwill issue a compile ERROR
/INor yoy can see them:
int x_dim = MyPoint.x; // Compiler will issue a compERROR

On the other hand, you can assign and read the public.dateensemb

MyPoint.color = 255; // no problem
int col = MyPoint.color; // no problem

With protected data members you can read-them but not write them
MyPoint.pinned = true; // Compiler will. issue a compilREOR

bool isPinned = MyPoint.pinned; // no problem

What is namespace?

Namespaces allow us to group a set of global classes, objedsfandtions
under a name. Ta say it somehow, they serve to split thalglobpe in sub-
scopes known/as namespaces.

The form to use namespaces is:

namespace identifier { namespace-body }

Whereidentifier isany valid identifier and namespace-bodyeisét of classes,
objects and functions that are included within the namespacex&le:
namespace general { int a, b; } In this case, a and b are norrizddlear
integrated within the general namespace. In order to access todhasées
from outside the namespace we have to use the scope operaipexakple, to
access the previous variables we would have to put:

general::a general::b

The functionality of namespaces is specially useful in case @&t itha
possibility that a global object or function can have the sameerthan another
one, causing a redefinition error.

What is a COPY CONSTRUCTOR and when is it called?
A copy constructor is a method that accepts an object of thectasseand
copies it's data members to the object on the left part @freseent:

class Point2D{
int x; inty;

203

public int color;

protected bool pinned;

public Point2D() : x(0) , y(0) {} //default (no arguméronstructor
public Point2D(const Point2D &) ;

%

Point2D::Point2D(const Point2D & p)
{

this->x = p.x;

this->y = p.y;

this->color = p.color;
this->pinned = p.pinned;

}

main(){

Point2D MyPoint;

MyPoint.color = 345;

Point2D AnotherPoint = Point2D(MyPoint); // now étherPoint has color =
345

What is Boyce Codd Normal form?

A relation schema R is in BCNF with respect to a set F aftiomal
dependencies if for all functional dependencies in F+ of ttre &> , where a
and b is a subset of R, at least one of the following holds

*a- > b is a trivial functional dependency (bis a subse) of

* ais a superkey for schema R

What is virtual class and friend class?

Friend classes are used.when two or more classes are designekl together
and need access to each other's implementation in ways thesttloé the world
shouldn't be allowed to have. In other words, they help geepte things
private. For instance, it may be desirable for class DatabaseGuisave more
privilege to the'internals of claBsatabas¢han main() has.

What is the word.you will use when defining a fundbn in base clasgo allow
this function to be a polimorphic function?

virtual

What do you mean by binding of data and functions?
Encapsulation.

What are 2 ways of exporting a function from a DLL?
1.Taking a reference to the function from the DLL instance.
2. Using the DLL 's Type Library

What is the difference between an object and a cla®

Classes and objects are separate but related concepts. Everpelojegs to a
class and every class contains one or more related objects.

- A Class is static. All of the attributes of a class are fixeftbre, during, and
after the execution of a program. The attributes of a classdamige.

204

- The class to which an object belongs is also (usuallii siea particular
object belongs to a certain class at the time that it is creagrdt thimost
certainly will still belong to that class right up untikttime that it is destroyed.
- An Object on the other hand has a limited lifespan. Objeetsraated and
eventually destroyed. Also during that lifetime, the atteudf the object may
undergo significant change.

Suppose that data is an array of 1000 integers. W a singlefunction call that
will sort the 100 elements data [222] through dat§321].
quicksort ((data + 222), 100);

What is a class?

Class is a user-defingthta typen C++. It can be created to solve a particular
kind of problem. After creation the user need not know teeiBps of the
working of a class.

What is friend function?

As the name suggests, the function acts as a friend to aAtasdriend of a
class, it can access its private and protected members. A friecitbfuis not a
member of the class. But it must be listed in the classitiefi.

Which recursive sorting technique always makes regsive calls to sort
subarrays that are about half size of the originahrray?

Mergesort always makes recursive calls to sort subarrays ¢habaut half size
of the original array, resulting in O(n log n) time.

What is abstraction?
Abstraction is of the process of hiding unwanted details fihe user.

What are virtual functions?

A virtual function allows derived classes to replace the impleamtientprovided
by thebase classThe compiler makes sure the replacement is always called
whenever the object in'question is actually ofdbeved classeven if the object
is accessed by a base pointer rather than a derived pointer.lawis al
algorithms in the base class to be replaced in the derivedelassif users don't
know.about the derived class.

What is the difference between an external iteratoand an internal iterator?
Describe an advantage of an external iterator.

Aninternal iterator is implemented with member functiohthe class that has
items to step through. .An external iterator is implentatea separate class
that can be "attach” to the object that has items to step thrdughxternal
iterator has the advantage that many difference iterators can be active

simultaneously on the same object.

What is a scope resolution operator?
A scope resolution operator (::), can be used to define théerdonctions of a
class outside the class.

What do you mean by pure virtual functions?
A pure virtual member function is a member function thattiase class forces
derived classes to provide. Normally these member functioresriav

205

implementation. Pure virtual functions are equated to zero.
class Shape { public: virtual void draw() = 0; };

What is polymorphism? Explain with an example?

"Poly" means "many" and "morph” means "form". Polymorphis the ability
of an object (or reference) to assume (be replaced by) or becomeliffiargnt
forms of object.

Example: function overloading, function overriding, virtb@hctions. Another
example can be a plus *+’ sign, used for adding two integeia using it to
concatenate two strings.

What's the output of the following program? Why?
#include <stdio.h>
main()

{

typedef union

{

int a;

char b[10];
float c;

}

Union;

Union x,y = {100},
x.a = 50;
strcpy(x.b,\"hello\");
X.c = 21.50;

printf(\"Union x : %d %s %f \n\",x.a,x.b,x.c);
printf(\"Union y.:%d %s%f \n\",y.a,y.b,y.c);

}

Given inputs X,Y,Z and operations | and & (meaning s#m®R and AND,
respectively)

What istoutput equal to in

output=(X&Y)|(X&2Z) | (Y &2)

Why are arrays usually processed with for loop?

The real power of arrays comes from their facility of usingndex variable to
traverse the array, accessing each element with the same expressilhthg]
is needed to make this work is a iterated statement in whechatieble i serves
as a counter, incrementing from O to a.length -1. That is gxahtt a loop
does.

What is anHTML tag ?

Answer: An HTML tag is a syntactical construct in the HTMLdaage that
abbreviates specific instructions to be executed when the HTMit scloaded
into a Web browser. It is like a methodJiava a function in C++, a procedure in
Pascal, or a subroutine in FORTRAN.

206

Explain which of the following declarations will canpile and what will be
constant - a pointer or the value pointed at: * cost char *

* char const *
* char * const

Note: Ask the candidate whether the first declaration is ipgind a string or a
single character. Both explanations are correct, but if he saty$'sha single
character pointer, ask why a whole string is initialized as dha*+. If he

says this is a string declaration, ask him to declare a pbéingesingle character.
Competent candidates should not have problems pointinghgutenst char*
can be both a character and a string declaration, incompetent drasmwe up
with invalid reasons.

You're given a simple code for the class Bank Custaer. Write the following
functions:

* Copy constructor

* = operator overload

* == operator overload

* + operator overload (customers’ balances shouldéadded up, as
an example of joint account between husband and ve§

Note:Anyone confusing assignment and equality operatorsdsheudismissed
from the interview. The applicant might make a mistake of pgdsirvalue, not
by reference. The candidate might also want-to return a panoteanew object
from the addition operator. Slightly hint that you'ddithe value to be changed
outside the function, too, in the first case. Ask him whethe statement
customer3 = customerl + customer2 would work in the secsel ¢

What problems might the following macro bring to the application?
#define sq(x) x*x

Anything wrong with this code?
T *p = new T[10];
delete p;

Everything is correct, Only the first element of the arrdi/véi deleted”, The
entire array will be deleted, but only the first element degdr will be called.

Anything wrong with this code?
T*p =0;
delete p;

Yes, the program will crash in an attempt to delete a nultgroin

How do you decide which integer type to use?

It depends on our requirement. When we are required an intelgerstored in 1
byte (means less than or equal to 255) we use short ir2t igles we use int, for
8 bytes we use long int.

A char is for 1-byte integers, a short is for 2-byte integan int is generally a 2-

207

byte or 4-byte integer (though not necessarily), a longlibye integer, and a
long long is a 8-byte integer.

What's the output of the following program? Why?
#include <stdio.h>
main()

{

typedef union

{

int a;

char b[10];
float c;

}

Union;

Union x,y = {100},
x.a = 50;
strcpy(x.b,\"hello\");
X.c = 21.50;

printf(\"Union x : %d %s %f \n\",x.a,X.b,x.c);
printf(\"Union y :%d %s%f \n\",y.a,y.b,y.c);

}

Given inputs X, Y, Z and operations | and & (meaning &R and AND,
respectively)

What is output equal to'in

output = (X & Y) | (X& Z2) | (Y & Z)

Why are arrays usually processed with for loop?

The real power of arrays comes from their facility of usingndex variable to
traverse the array, accessing each element with the same expressilhthg]
is needed to makerthis work is a iterated statement in whéchetiiable i serves
as a‘counter, incrementing from O to a.length -1. That is gxahtt a loop
does.

What is anHTML tag ?

Answer: An HTML tag is a syntactical construct in the HTMLdaage that
abbreviates specific instructions to be executed when the HTMit scloaded
into a Web browser. It is like a methodJiava a function in C++, a procedure in
Pascal, or a subroutine in FORTRAN.

Explain which of the following declarations will canpile and what will be
constant - a pointer or the value pointed at: * cost char *

* char const *
* char * const

Note: Ask the candidate whether the first declaration is ipgind a string or a
single character. Both explanations are correct, but if he lsalyg’s a single

208

character pointer, ask why a whole string is initialized as dhat*+. If he

says this is a string declaration, ask him to declare a ptingesingle character.
Competent candidates should not have problems pointinghgutenst char*
can be both a character and a string declaration, incompetent dresmwea up
with invalid reasons.

You're given a simple code for the class Bank Custheer. Write the following
functions:

* Copy constructor

* = operator overload

* == operator overload

* + operator overload (customers’ balances shouldéadded up, as
an example of joint account between husband and ve§

Note:Anyone confusing assignment and equality operatorsdsheudismissed
from the interview. The applicant might make a mistake of pgdsirvalue, not
by reference. The candidate might also want to return a panoteginew object
from the addition operator. Slightly hint that you’'ddithe value to be changed
outside the function, too, in the first case. Ask’him whethe statement
customer3 = customerl + customer2 would work in the seas® ¢

What problems might the following macro bring, to the application?
#define sq(x) x*x

Anything wrong with this code?
T *p = new T[10];
delete p;

Everything is correct, Only thefirst element of the arrdi/lvei deleted”, The
entire array will be deleted,.but only the first element degir will be called.

Anything wrong with this code?
T*p=0;
delete p;

Yes, the program will crash in an attempt to delete a nulkgoin

How do you decide which integer type to use?

It depends on our requirement. When we are required an intelgerstored in 1
byte (means less than or equal to 255) we use short irdt bigtes we use int, for
8 bytes we use long int.

A char is for 1-byte integers, a short is for 2-byte integan int is generally a 2-
byte or 4-byte integer (though not necessarily), a longlibge integer, and a
long long is a 8-byte integer.

How do | initialize a pointer to a function?
This is the way to initialize a pointer to a function
void fun(int a)

{

209

}

void main()

void (*fp)(int);
fp=fun;
fp(2);

}

How do you link a C++ program to C functions?
By using the extern "C" linkage specification around the Ctfan declarations.

Explain the scope resolution operator.
It permits a program to reference an identifier in the glotibe that has been
hidden by another identifier with the same name in the locaksco

What are the differences between a C++ struct and-€- class?
The default member and base-class access specifier are different.

How many ways are there to initialize an int with aconstant?

Two.

There are two formats for initializers in C++ as shown énagkample that
follows. The first format uses the traditional C'notatidhe second format uses
constructor notation.

int foo = 123;

int bar (123);

How does throwing and catching exceptions differ fsm using setjmp and
longjmp?

The throw operation calls the destructors for automatic ohijestEntiated since
entry to the try block.

What is a default constructor?
Default.constructor. WITH arguments class B { public: B (m& 0) : n (m) {}
int n; }; inttmain(int argc, char *argv[]) { B b; returr §

What is a conversion constructor?
A'constructor that accepts one argument of a different type.

What is the difference between a copy constructorral an overloaded

assignment operator?

A copy constructor constructnaw objecty using the content of the argument
object. An overloaded assignment operator assigns the cortamtexisting
object to another existing object of the same class.

When should you use multiple inheritance?
There are three acceptable answers: "Never," "Rarely," and "Wa@nablem
domaincannot be accurately modeled any other way."

Explain the ISA and HASA class relationships. How wuld you implement each
in a class design?

210

A specialized class "is" a specialization of another class andfdherhas the
ISA relationship with the other class. An Employee ISA Rersbis
relationship is best implemented with inheritance. Employderised from
Person. A class may have an instance of another class. For example,
employee "has" a salary, therefore the Employee class has the HASA
relationship with the Salary class. This relationship is ingstemented by
embedding an object of the Salary class in the Employee class.

When is a template a better solution than &ase clas®

When you are designing a generic class to contain or othensisage objects
of other types, when the format and behavior of those otpes tare
unimportant to their containment or management, and partizudaen those
other types are unknown (thus, the generosity) to the desidihe container or
manager class.

What is a mutable member?
One that can be modified by the class even when the objee oits or the
member function doing the modification is const.

What is an explicit constructor?

A conversion constructor declared with the explicit keywoltk dompilerdoes
not use an explicit constructor to implement an.implied emsion of types. It's
purpose is reserved explicitly for construction.

What is the Standard Template Library (STL)?

A library of container templates approved by the ANSI conemifor inclusion

in the standard C++ specification.

A programmemho then launches into a discussion of the generic progragnmin
model, iterators, allocators, algorithms, and such, hashahiban average
understanding of the net@chnologythat STL brings to C++ programming.

Describe run-time'type identification.
The ability to determine at run time the type of an objectdiyguthe typeid
operator or the dynamic_cast operator.

What problem does the namespace feature solve?

Multiple providers of libraries might use common glolritifiers causing a
name collision when an application tries to link with twarare such libraries.
The namespace feature surrounds a library’s external declarattbres umique
namespace that eliminates the potential for those collisions.

This solution assumes that two library vendors don’tthieesame namespace
identifier, of course.

Are there any new intrinsic (built-in) data types?
Yes. The ANSI committee added the bool intrinsic type anuéand false
value keywords.

Will the following program execute?
void main()

void *vptr = (void *) malloc(sizeof(void));
vptr++; }

211

Answerl
It will throw an error, as arithmetic operations cannot beopexéd on void
pointers.

Answer2
It will not build as sizeof cannot be applied to void* (certUnknown size”)

Answer3
How can it execute if it won't even compile? It needs to benait, not void
main. Also, cannot increment a void *.

Answer4
According to gccompilerit won't show any error, simply it executes. but in
general we can’t do arthematic operation on void, and gives sizetéas 1

Answer5

The program compiles in GNU C while giving a warning fopithmain”. The
program runs without a crash. sizeof(void) is “1? hence when+, the address
is incremented by 1.

Answer6

Regarding arguments about GCC, be aware/that this is a C+ioquest C. So
gcc will compile and execute, g++ cannot-g++ complains thaetben type
cannot be void and the argument of sizeof() cannot be vaitdtreports that
ISO C++ forbids incrementing a pointer of type ‘void*".

Answer7

in C++

voidp.c: In function “int main()’:

voidp.c:4: error: invalid application of “sizeof’ to a vdyghe

voidp.c:4: error; “'malloc” undeclared (first use this funtfio

voidp.c:4: error: (Each undeclared identifier is reported onbe for each
function it appears in.)

voidp.c:6: error: ISO C++ forbids incrementing a pointietype “void*’

But in ¢, it work'without problems

void main()

{

char *cptr = 0?2000;

long *Iptr = 072000;
cptr++;

Iptr++;

printf(” %x %x”, cptr, Iptr);
}

Will it execute or not?
Answerl

For Q2: As above, won't compile because main must returAls, 0x2000

cannot be implicitly converted to a pointer (I assume you n@e2@00 and not
07?2000.)

Answer2

212

Not Excute.

Compile with VC7 results following errors:

error C2440: ‘initializing’ : cannot convert from ‘intbt'char *
error C2440: ‘initializing’ : cannot convert from ‘intbtlong *

Not Excute if it is C++, but Excute in C.
The printout:
2001 2004

Answer3

In C++

[$]> g++ point.c

point.c: In function “int main()’:

point.c:4: error: invalid conversion from “int’ to “char*
point.c:5: error: invalid conversion from “int’ to “lomgf*’

inC

[$] etc > gcc point.c

point.c: In function “main’:

point.c:4: warning: initialization makes pointer from integéhout a cast
point.c:5: warning: initialization makes pointer from integéthout a cast
[$] etc > .Ja.exe

2001 2004

What is the difference -between Mutex and Binary seaphore?
semaphore is used to'synchronize processes. where as mutexte prestitie

synchronization between threads running in the same process.

In C++, what is the difference between method oveshding and method
overriding?

Overloading a method (or function) in C++ is the abildy functions of the
same-hame to be defined as long as these methods have differatirsig
(different set of parameters). Method overriding is the ghofithe inherited
class rewriting the virtual method of the base class.

What methods can be overridden in Java?

In C++ terminology, all public methods in Java are virtiialerefore, all Java
methods can be overwritten in subclasses except those that arediénkily
static, and private.

What are the defining traits of an object-orientedlanguage?
The defining traits of an object-oriented langauge are:

* encapsulation

* inheritance

* polymorphism

213

Write a program that ask for user input from 5 to 9 then calculate the average
int main()

{

int MAX=4;

int total =0;

int average=0;

int numb;

cout<<"Please enter your input from 5 to 9";
cin>>numb;

if((numb <5)&&(Nhumb>9))

cout<<"please re type your input";

else

for(i=0;i<=MAX; i++)

{

total = total + numb;

average= total /MAX;

}

cout<<"The average number is"<<average<<endl;

return O;

}

Assignment Operator - What is the diffrence betweem "assignment operator”
and a "copy constructor"?

Answerl.

In assignment operator, you are-assigning a value to amegxidtject. But in
copy constructor, you are creating'a new object and then agsmradue to that
object. For example:

complex c1,c2;

cl=c2; //this is assignment

complex c3=c2; //copy constructor

Answer2.

A copy constructor.is used to initialize a newly declared variadie an
existing variable, This makes a deep copy like assignmenit,isisomewhat
simpler:

There is no need to test to see if it is being initializethfitself.
There is no need to clean up (eg, delete) an existing value i&¢heree).
A reference to itself is not returned.

RTTI - What is RTTI?

Answerl.

RTTI stands for "Run Time Type Identification”. In an irikerce hierarchy, we
can find out the exact type of the objet of which it is memlbean be done by
using:

1) dynamic id operator
2) typecast operator

Answer2.
RTTI is defined as follows: Run Time Type Informationaaility that allows an

214

object to be queried at runtime to determine its type. Orteediindamental
principles of object technology is polymorphism, whickhis ability of an object
to dynamically change at runtime.

STL Containers - What are the types of STL containes?
There are 3 types of STL containers:

1. Adaptive containers like queue, stack
2. Associative containers like set, map
3. Sequence containers like vector, deque

What is the need for a Virtual Destructor ?

Destructors are declared as virtual because if do not declangriiuas the -base
class destructor will be called before the derived class destaraidhat will
lead to memory leak because derived class&€™s objects will.not get
freed.Destructors are declared virtual so as to bind objettis toethods at
runtime so that appropriate destructor is called.

What is "mutable"?

Answerl.

"mutable” is a C++ keyword. When we declare const, none daitsmembers
can change. When we want one of its members to change, we deatare i
mutable.

Answer2.

A "mutable” keyword is useful when we want to force a ‘tagconst” data
member to have its value modified. A logical const can happen wie declare
a data member as non-const, but we have a const member funetioptisiy to
modify that data member. For example:

class Dummy {

public:

bool isValid() const;

private:

mutable int size = 0;

mutable bool validStatus = FALSE;

/I'logical const issue resolved

3

bool Dummy::isValid() const
/I data members become bitwise const

{

if (size > 10) {

validStatus_ = TRUE; // fine to assign
size = 0; // fine to assign

}
}

215

Answer2.

"mutable" keyword in C++ is used to specify that the memiey be updated or
modified even if it is member of constant object. Example:

class Animal {

private:

string name;

string food;

mutable int age;

public:

void set_age(int a);

h

void main() {

const Animal Tiger(&€E™Fulffya€™ 'anteloped€™,1);
Tiger.set_age(2);

/I the age can be changed since its mutable

}

Differences of C and C++

Could you write a small program that will compile-in C but not in
C++?

In C, if you can a const variable e.g.

constinti=2;

you can use this variable in other module as follows

extern const int i;

C compilerwill not complain.

But for C++ compiler u must write
extern constinti = 2;
else error would be‘generated.

Bitwise Operations - Given inputs X, Y, Z and oper&ons | and & (meaning
bitwise OR and AND, respectively), what is output gual to in?
output =(X & Y) | (X & 2) | (Y & 2);

Whatis a modifier?

A madifier, also called a modifying function is a memberction that changes
the value of at least one data member. In other words, aatiopethat modifies
the state of an object. Modifiers are also known as ‘mutatexsimple: The
function mod is a modifier in the followingpde snippet

class test

{

int x,y;
public:
test()

{

x=0; y=0;

}

void mod()

{

216

x=10;
y=15;
}
h

What is an accessor?
An accessor is a class operation that does not modify theottieobject. The
accessor functions need to be declared as const operations

Differentiate between a template class and classtglate.

Template class: A generic definition or a parameterized classstabiiated
until the client provides the needed information. It's jargomplain templates.
Class template: A class template specifies how individual classdscan
constructed much like the way a class specifies how.individyetts can be
constructed. It's jargon for plain classes.

When does a name clash occur?

A name clash occurs when a name is defined in more than one gace. F
example., two different class libraries could give two diffesta$ses the same
name. If you try to use many class libraries-at the same tiee is a fair
chance that you will be unable to compile or link’'the progracabse of name
clashes.

Define namespace.

It is a feature in C++ to minimize name collisions in thabgl name space. This
namespace keyword assigns a distinct name to a library that allbers
libraries to use the same identifier names without creatingame collisions.
Furthermore, the compiler uses the namespace signature for diéfengrthe
definitions.

What is the use of ‘using’ declaration. ?
A using declaration makes it possible to use a name from a nareesjthout
the scope operator:

What is'an Iterator class ?

A class that is used to traverse through the objects maintayrecbntainer
class. There are five categories of iterators: input iteratotgybiterators,
forward iterators, bidirectional iterators, random access.eXatir is an entity
that gives access to the contents of a container object witiobating
encapsulation constraints. Access to the contents is grantedraat-a-time
basis in order. The order can be storage order (as in listpuanes) or some
arbitrary order (as in array indices) or according to somerioigl relation (as in
an ordered binarire@. The iterator is a construct, which provides an interface
that, when called, yields either the next element in the containsome value
denoting the fact that there are no more elements to examineoridriate the
details of access to and update of the elements of a container class.

The simplest and safest iterators are those that permit readamndys to the
contents of a container class.

217

What is an incomplete type?

Incomplete types refers to pointers in which there is noricdoifitly of the
implementation of the referenced location or it points toesmoation whose
value is not available for modification.

int *i=0x400 // i points to address 400
*=0; //set the value of memory location pointed by i.

Incomplete types are otherwise called uninitialized pointers.

What is a dangling pointer?

A dangling pointer arises when you use the address of aot@fjer
its lifetime is over. This may occur in situations likeureing
addresses of the automatic variables from a function or tising
address of the memory block after it is freed. The following
code snippet shows this:

class Sample

{

public:

int *ptr;
Sample(int i)

ptr = new int(i);

}

~Sample()

{

delete ptr;

void PrintVal()

{

cout << "The value is" << *ptr;

}
h

void SemeFunc(Sample x)

{

cout << "Say i am in someFunc " << endl;

}

int main()

{

Sample sl = 10;
SomeFunc(sl);
s1.PrintVal();

}

In the above example when PrintVal() function is
called it is called by the pointer that has been freed by the
destructor in SomeFunc.

218

Differentiate between the message and method.
Message:

* Objects communicate by sending messages to each other.
* A message is sent to invoke a method.

Method
* Provides response to a message.
* [t is an implementation of an operation.

What is an adaptor class or Wrapper class?

A class that has no functionality of its own. Its menfbactions hide the use of
a third party software component or an object with the norpatibie interface
or a non-object-oriented implementation.

What is a Null object?

It is an object of some class whose purpose is to indicat@ treal object of that
class does not exist. One common use for a null object iara retlue from a
member function that is supposed to return an object witfespecified

properties but cannot find such an object.

What is class invariant?

A class invariant is a condition that defines.all valid stadean object. It is a
logical condition to ensure the correct working of a clasas€invariants must
hold when an object is created,;and they must be preservedalhdperations
of the class. In particular all class invariants are both pregonsliand post-
conditions for all operations or member functions of fasx

What do you mean by. Stack unwinding?

It is a process during exception handling when the destnsatailed for all
local objects between the place where the exception was thrown anel itils
caught.

Define precondition.and post-condition to a membefunction.

Precondition: A precondition is a condition that mustrbe bn entry to a
member function. A class is used correctly if preconditioasaver false. An
operation is not responsible for doing anything sendiliie precondition fails to
hold. For example, the interface invariants of stack class shing@bout
pushing yet another element on a stack that is already fullayat isful() is
a precondition of the push operation. Post-conditionogtqsondition is a
condition that must be true on exit from a member fungitire precondition
was valid on entry to that function. A class is implemewtadectly if post-
conditions are never false. For example, after pushing an elem#ére stack,
we know that isempty() must necessarily hold. This is &@mwdition of the
push operation.

What are the conditions that have to be met for aandition to be an invariant of
the class?

* The condition should hold at the end of every constructor.

* The condition should hold at the end of every mutaton{canst) operation.

219

What are proxy objects?

Objects that stand for other objects are called proxy objests@myates.
template <class t="">

class Array2D

{
public:
class ArraylD

{

public:

T& operator]] (int index);

const T& operator[] (int index)const;

h

ArraylD operator[] (int index);
const ArraylD operator][] (int index) const;

%
The following then becomes legal:

Array2D<float>data(10,20);
cout<<data[3][6]; // fine

Here data[3] yields an ArraylD object and the operator [] invarcatn that
object yields the float in position(3,6) of the originabtdimensional array.
Clients of the Array2D class need not be aware of the presetioe Afray1D
class. Objects of this latter class stand for one-dimensiora objects that,
conceptually, do not exist for clients of Array2D. Such cligmogram as if they
were using real, live, two-dimensional arrays. Each Arraylijpab stands for a
one-dimensional array that is absent from a conceptual masttbyshe clients
of Array2D. In the above example, ArraylD is a proxy classnktances stand
for one-dimensional-arrays that, conceptually, do not.exis

Name some pure object oriented languages.
Smalltalk, Java, Eiffel, Sather.

What is'an orthogonal base class?

If two.base classes have no overlapping methods or data theydate ke
independent of, or orthogonal to each other. Orthogorthkisense means that
two classes operate in different dimensions and do notengerfith each other
in any way. The same derived class

What is a node class?

A node class is a class that,

* relies on thebase clasfor services and implementation,

* provides a wider interface to the users than its base class,
* relies primarily on virtual functions in its public erface

* depends on all its direct and indirect base class

* can be understood only in the context of the base class

* can be used as base for further derivation

* can be used to create objects.

220

A node class is a class that has added new services or fungfibegtind the
services inherited from its base class.

What is a container class? What are the types of ntainer classes?

A container class is a class that is used to hold objectsnomgeorexternal
storage A container class acts as a generic holder. A container class has a
predefined behavior and a well-known interface. A container idass
supporting class whose purpose is to hide the topolagy fias maintaining the
list of objects in memory. When a container class containsupgif mixed
objects, the container is called a heterogeneous container; veheonttainer is
holding a group of objects that are all the same, the containaliéd a
homogeneous container.

How do you write a function that can reverse a linkd-list?
Answerl:

void reverselist(void)

if(head==0)

return;
if(head-<next==0)
return;
if(head-<next==tail)
{

head-<next = 0;
tail-<next = head;

}

else

node* pre = head;

node* cur = head-<next;
node* curnext = cur-<next;
head-<next = 0;

cur-<next = head;

for(; curnext!=0;)

cur-<next = pre;
pre = cur,;

Ccur = curnext;
curnext = curnext-<next;

}

curnext-<next = cur;

}
}

Answer2:
node* reverselist(node* head)

{

if(0==head || O==head->next)

221

[lif head->next ==0 should return head instead of O;
return O;

node* prev = head;
node* curr = head->next;
node* next = curr->next;

for(; next!=0;)

{

curr->next = prev;
prev = curr;

curr = next;

next = next->next;
}

curr->next = prev;

head->next = 0;

head = curr;
}
return head;
}

What is polymorphism?

Polymorphism is the idea that asbase class can be inheriteddmnakclasses. A
base class pointer can point.to its child class and a base cissanristore
different child class objects.

How do you find out if a linked-list has an end? (e. the list is not a cycle)

You can find out by using 2 pointers. One of them goesds each time. The
second one goes at.1 nodes each time. If there is a cycle, ttimbgees 2
nodes each time will eventually meet the one that goes sldwieat is the case,
then you will know the linked-list is a cycle.

may.inherit such classes with no difficulty

How can you tell what shell you are running on UNIXsystem?
You.can do the Echo $RANDOM. It will return a undefinedafale if you are
from the C-Shell, just a return prompt if you are from Bourne shell, and a 5
digit random numbers if you are from the Korn shell. ¥ould also do a ps -
and look for the shell with the highest PID.

What is Boyce Codd Normal form?

A relation schema R is in BCNF with respect to a set F aitiomal
dependencies if for all functional dependencies in F+ of the &&>b, where a
and b is a subset of R, at least one of the following holds

* a->b is a trivial functional dependency (b is a subsei)of
* ais a superkey for schema R

222

What is pure virtual function?
A class is made abstract by declaring one or more of its vitioations to be

pure. A pure virtual function is one with an initializer-o0 in its declaration

Write a Struct Time where integer m, h, s are its mmbers
struct Time

{

int m;
int h;
ints;

h

How do you traverse a Btree in Backward in-order?
Process the node in the right subtree

Process the root

Process the node in the left subtree

What is the two main roles ofOperating Systen?
As a resource manager
As a virtual machine

In the derived class, which data member of the basgass are visible?
In the public and protected sections.

Could you tell something about the Unix System Kerel?

The kernel is the heart of thiNIX openrating system, it's reponsible for
controlling the computer’s resouces and scheduling usergaiateach one
gets its fair share of resources.

What are each of the standard files and what are #y normally associated
with?

They are the standard input file, the standard output filelendtandard error
file. The first is usually associated with the keyboard, #do@isd and third are
usually associated with the terminal screen.

Detemine the code below, tell me exectly how maniyrtes is the operation
sum++ performed ?

for (1=0;i<100; i++)

for(j=100;j> 100 -i; j-)

sum-++;

(99 * 100)/2 = 4950
The sum++ is performed 4950 times.

Give 4 examples which belongs application layer inCP/IP architecture?
FTP,TELNET, HTTP and TFTP

What's the meaning of ARP in TCP/IP?

The "ARP" stands for Address Resolution Protocol. TREAtandard defines
two basic message types: a request and a response. a request coggaaean
IP addressind requests the corresponding hardware address; a replaysontain
both the IP address, sent in the request, and the hardwaessaddr

223

What is a Makefile?

Makefile is a utility in Unix to help compile large prograrttshelps by only
compiling the portion of the program that has been changed.

A Makefile is the file and make uses to determine what rulappty. make is
useful for far more than compiling programs.

What is deadlock?

Deadlock is a situation when two or more processes prevent gcHrom
running. Example: if T1 is holding x and waiting fotoybe free and T2 holding
y and waiting for x to be free deadlock happens.

What is semaphore?

Semaphore is a special variable, it has two methods: up and 8emaphore
performs atomic operations, which means ones a semaphore . istazdiechot
be inturrupted.

The internal counter (= #ups - #downs) can never be negdtixau Execute the
“down” method when the internal counter is zero, it will'blockil some other
thread calls the “up” method. Semaphores are use forthread syizealion.

Is C an object-oriented language?
C is not an object-oriented language,but limited object-aitptogramming
can be done in C.

Name some major differencesbetween C++ anlhva.

C++ has pointers; Java does not. Java is platform-indepe@tents not. Java
has garbage collection; C++ does not. Java does have pointad. dil
variables in Java are pointers. The difference is that Java dogifomoyou to
manipulate the addresses of the pointer

What is the difference between Stack and Queue?
Stack is a.Last In First Out (LIF@ata structure
Queue. is a First'In_First Out (FIFO) data structure

Write afucntion that will reverse a string.
char *strrev(char *s)

{
inti=0, len = strlen(s);
char *str;

if ((str = (char *)malloc(len+1)) == NULL)
[*cannot allocate memory */

err_num = 2;

return (str);

while(len)
str[i++]=s[-len];
str[i] = NULL,;
return (str);

}

224

What is the software Life-Cycle?

The software Life-Cycle are

1) Analysis and specification of the task

2) Design of the algorithms and data structures
3) Implementation (coding)

4) Testing

5) Maintenance and evolution of the system

6) Obsolescence

What is the difference between dava applicationand a Java applet?

The difference between a Java application and a Java applet isdkat a J
application is a program that can be executed using the Jayseteteand a
JAVA applet can be transfered to differaetworksand executed by using a
web browser (transferable to the WWW).

Name 7 layers of the OSI Reference Model?
-Application layer

-Presentation layer

-Session layer

-Transport layer

-Network layer

-Data Link layer

-Physical layer

What are the advantages and disadvantages of B-star treegen Binary
trees?

Answerl
B-star trees have better data structure and are faster in sear8indgrnrees,
but it's harder to write .codes for B-start trees.

Answer2

The major difference between B-tree and binary tres is that Bsteeexternal
data structure and binary tree is a main memory data struthee.
computational complexity of binary tree is counted by thebarof comparison
operations at each node, while the computational complexitytdeBis
determined by the disk I/O, that is, the number of nodenthidbe loaded from
disk to main memory. The comparision of the different valnese node is not
counted.

Write the psuedo code for the Depth first Search.

dfs(G, v) //OUTLINE

Mark v as "discovered"”

For each vertex w such that edge vw is in G:

If w is undiscovered:

dfs(G, w); that is, explore vw, visit w, explore froneth as much as possible,
and backtrack from w to v. Otherwise:

"Check" vw without visiting w. Mark v as "finished".

225

Describe one simple rehashing policy.

The simplest rehashing policy is linear probing. Supposy &khashes to
location i. Suppose other key occupies HJi]. The followiangction is used to
generate alternative locations:

rehash(j) = (j + 1) mod h

where j is the location most recently probed. Initially j the hash code for K.
Notice that this version of rehash does not depend on K.

Describe Stacks and name a couple of places where stacks are useful

A Stack is a linear structure in which insertions and delgetéoa always made at
one end, called the top. This updating policy is called lasirgt out (LIFO). It

is useful when we need to check some syntex errors, suchsaisgnis
parentheses.

Suppose a 3-bit sequence number is used in the selective-reject@Rvhat
is the maximum number of frames that could be transmitted ta time?

If a 3-bit sequence number is used, then it could distihdidifferent frames.
Since the number of frames that could be-transmitted at a tinoegseater half
the numner of frames that could be distinguished by the seguember, so at
most 4 frames can be transmitted at a time:

226

REFERENCES:

1)DATA STRUCTURES USING C AND C++ -Yedidyah Langsan &
M.Tenenbaum

2)OBJECT-ORIENTED PROGRAMMING IN C++ -Nabajyoti Ba rkakati

3) OBJECT-ORIENTED PROGRAMMING IN C++ -E Balagurus amy

4)C AND DATA STRUCTURES -A.S.R.MURTHY

227

