SREE VAHINI INSTITUTE OF SCIENCE & TECHNOLOGY::TIRUVURU Department Of Computer Science and Engineering

Course outcome

Course Title:	ADVANCED COMPUTING LAB
Programme:	M.Tech
Academic Year	2019-20
Year/Semester:	I/I
Regulation:	R19
Subject Code:	MTCSE1107
Name of the Faculty:	K.V.PANDU RANGA RAO

I. COURSE OUTCOMES(COs):

S.No.	Course Outcomes	Blooms Taxonomy level
CO1	Understand and explain the basic concepts of Grid Computing	Understand
CO2	Explain the advantages of using Grid Computing within a given environment	Understand
CO3	Describe for any upcoming Grid deployments and be able to get started with a potentially available Grid setup	Remember
CO4	Examine some of the enabling technologies e.g. high-speed links and storage area networks	Apply
CO5	Build computer grids	Create

Department Of Computer Science and Engineering

Course outcome

Course Title:	ADVANCED COMPUTER NETWORKS
Programme:	M. Tech
Academic Year	2019-20
Year/Semester:	I/I
Regulation:	R19
Subject Code:	M5806
Name of the Faculty:	K.V.PANDURANGA RAO

I. COURSE OUTCOMES(COs):

S.No.	Course Outcomes	Blooms Taxonomy level
CO1	Explain OSI and TCP/IP models	Understand
CO2	Define MAC layer protocols and LAN technologies	Remember
CO3	Show applications using internet protocols	Apply
CO4	Classify routing and congestion control algorithmS	Analyze

Department Of Computer Science and Engineering

Course outcome

Course Title:	ADVANCED DATA STRUCTURES LAB
Programme:	M.Tech
Academic Year	2019-20
Year/Semester:	I/I
Regulation:	R19
Subject Code:	MTCSE1106
Name of the Faculty:	K. GOPI

I. COURSE OUTCOMES(COs):

S.No.	Course Outcomes	Blooms Taxonomy level
CO1	To understand heap and various tree structures like AVL, Red- black, B and Segment trees	Understand
CO2	Solve the problems such as line segment intersection, convex shell and Voronoi diagram	Analyze
CO3	To understand the problems such as line segment intersection, convex shell and Voronoi diagram	Understand
CO4	Implement heap and various tree structure like AVL, Red-black, B and Segment trees	Apply

Department Of Computer Science and Engineering

Course outcome

Course Title:	ADVANCED OPERATING SYSTEMS
Programme:	M. Tech
Academic Year	2019-20
Year/Semester:	I/I
Regulation:	R19
Subject Code:	M5805
Name of the Faculty:	M.KISHORE KUMAR

I. COURSE OUTCOMES(COs):

S.No.	Course Outcomes	Blooms Taxonomy level
CO1	Solve various Scheduling algorithms.	Understand
CO2	Apply the principles of concurrency & Agreement protocols	Understand
CO3	Define Failure Recovery and Fault tolerance	Apply
CO4	Analyze various memory management schemes	Understand

Department Of Computer Science and Engineering

Course Title:	ADANCED DATA STRUCTURES & ALGORITHMS
Programme:	M. Tech
Academic Year	2019-20
Year/Semester:	I/I
Regulation:	R19
Subject Code:	M5802
Name of the Faculty:	K.GOPI

Course outcome

I. COURSE OUTCOMES(COs):

S.No.	Course Outcomes	Blooms Taxonomy level
CO1	Be able to understand and apply amortized analysis on data structures, including binary search trees, mergeable heaps, and disjoint sets.	Understand
CO2	Understand the implementation and complexity analysis of fundamental algorithms such as RSA, primality testing, max flow, discrete Fourier transform.	Analyze
CO3	Analyze the space and time complexity of the algorithms studied in the course.	Analyze
CO4	Have an idea of applications of algorithms in a variety of areas, including linear programming and duality, string matching, game- theory	Apply
CO6	Describe the concept behind neural networks for learning non-linear functions	Understand

Department Of Computer Science and Engineering

Course Title:	MATHEMATICALFOUNDATION OF COMPUTER SCIENCE
Programme:	M. Tech
Academic Year	2019-20
Year/Semester:	I/I
Regulation:	R19
Subject Code:	M5801
Name of the Faculty:	SK. SAIDA

Course outcome

I. COURSE OUTCOMES(COs):

S.No.	Course Outcomes	Blooms Taxonomy level
CO1	Understand skills in solving mathematical problems	Understand
CO2	Ability to comprehend mathematical principles and logic	Apply
CO3	To demonstrate knowledge of mathematical modeling and proficiency in using mathematical software	Analyse
CO4	Analyze data numerically and/or graphically using appropriate Software	Apply
CO5	To Develop communicate effectively mathematical ideas/results verbally or in Writing	Understand

SREE VAHINI INSTITUTE OF SCIENCE & TECHNOLOGY :: TIRUVURU Department Of Computer Science and Engineering

Course outcome

Course Title:	RM & IPR
Programme:	M. Tech
Academic Year	2019-20
Year/Semester:	I/I
Regulation:	R19
Subject Code:	M0109
Name of the Faculty:	D.BASKAR RAO

I. COURSE OUTCOMES(COs):

S.No.	Course Outcomes	Blooms Taxonomy level
CO1	Understand skills in solving research porblems	Understand
CO2	Ability to comprehend patents rights	Apply
CO3	To demonstrate knowledge of paper demonstration	Analyse
CO4	To demonstrate knowledge of licensing and transferring of technology	Apply

Department Of Management of Business Administration

Course outcome

Course Title:	ADVANCED DATABASES & MINING
Programme:	M.TECH
Academic Year	2019-2020
Year/Semester:	I/II
Regulation:	R19
Subject Code:	N5803
Name of the Faculty:	D.MANI MOHAN

I. COURSE OUTCOMES(COs):

S.No.	Course Outcomes	Blooms Taxonomy level
CO1	Understand stages in building a Data Warehouse	Understand
CO 2	Understand the need and importance of preprocessing techniques	Understand
CO 3	Understand the need and importance of Similarity and dissimilarity techniques	Understand
CO 4	Analyze and evaluate performance of algorithms for Association Rules.	Analyze
CO 5	Analyze Classification and Clustering algorithms	Analyze

Department Of Computer Science Engineering

Course Title:	CLOUD COMPUTING
Programme:	M.Tech
Academic Year	2019-2020
Year/Semester:	I/II
Regulation:	R19
Subject Code:	N5806
Name of the Faculty:	M.MANJUSHA

Course outcome

I. COURSE OUTCOMES(COs):

S.No.	Course Outcomes	Blooms Taxonomy level
CO1	Able to understand formulation and solving Lpp, decission making problems	Apply
CO 2	Able to understand to minimize transportation cost , job sequence through machines	Apply
CO3	Study replacement and maintenance analysis techniques	Apply
CO4	Derive and calculate queuing model and solving theory of games	Evaluate
CO 5	Able to solve deterministic inventory models with price brakes	Apply

Department Of Computer Science and Engineering

Course outcome

Course Title:	MACHINE LEARNING WITH PYTHON LAB
Programme:	M.Tech
Academic Year	2019-20
Year/Semester:	I/II
Regulation:	R19
Subject Code:	N5809
Name of the Faculty:	M.KISHORE KUMAR

I. COURSE OUTCOMES(COs):

S.No.	Course Outcomes	Blooms Taxonomy level
CO1	Explain the characteristics of machine learning that make it useful to real-world, Problems.	Understand
CO2	Categorize machine learning algorithms as supervised, semi- supervised, and Unsupervised.	Analyze
CO3	Analyze a few machine learning toolboxes.	Analyze
CO4	Use support vector machines and regularized regression algorithms	Apply
CO6	Describe the concept behind neural networks for learning non-linear functions	Understand

Department Of Computer Science and Engineering

Course outcome

Course Title:	MACHINE LEARNING
Programme:	M.Tech
Academic Year	2019-20
Year/Semester:	I/II
Regulation:	R19
Subject Code:	N5801
Name of the Faculty:	M.KISHORE KUMAR

I. COURSE OUTCOMES(COs):

S.No.	Course Outcomes	Blooms Taxonomy level
CO1	Explain the characteristics of machine learning that make it useful to real-world, Problems.	Understand
CO2	Categorize machine learning algorithms as supervised, semi- supervised, and Unsupervised.	Analyze
CO3	Analyze a few machine learning toolboxes.	Analyze
CO4	Use support vector machines and regularized regression algorithms	Apply
CO6	Describe the concept behind neural networks for learning non-linear functions	Understand

Department Of Computer Science and Engineering

Course outcome

Course Title:	MEAN STACK TECHNOLOGIES LAB
Programme:	M.Tech
Academic Year	2019-20
Year/Semester:	I/II
Regulation:	R19
Subject Code:	N5810
Name of the Faculty:	B.SIVA KANAKA RAJU

I. COURSE OUTCOMES(COs):

S.No.	Course Outcomes	Blooms Taxonomy level
CO1	Translate user requirements into the overall architecture and implementation of new systems and Manage Project and coordinate with the Client.	Understand
CO 2	Writing optimized front end code HTML and JavaScript	Analyze
CO3	Monitor the performance of web applications & infrastructure and Troubleshooting web application with a fast and accurate a resolution	Analyze
CO4	Design and implementation of Robust and Scalable Front End Applications	Analyze

Department Of Computer Science and Engineering

Course outcome

Course Title:	MEAN STACK TECHNOLOGIES
Programme:	M.Tech
Academic Year	2019-20
Year/Semester:	I/II
Regulation:	R19
Subject Code:	N5802
Name of the Faculty:	B.SIVA KANAKA RAJU

I. COURSE OUTCOMES(COs):

S.No.	Course Outcomes	Blooms Taxonomy level
CO1	Translate user requirements into the overall architecture and implementation of new systems and Manage Project and coordinate with the Client.	Understand
CO 2	Writing optimized front end code HTML and JavaScript	Analyze
CO3	Monitor the performance of web applications & infrastructure and Troubleshooting web application with a fast and accurate a resolution	Analyze
CO4	Design and implementation of Robust and Scalable Front End Applications	Analyze